This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of non-empty hom-sets is non-empty. (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcocl.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| catcocl.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| catcocl.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| catcocl.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| catcocl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| catcocl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| catcocl.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| catcone0.f | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) | ||
| catcone0.g | ⊢ ( 𝜑 → ( 𝑌 𝐻 𝑍 ) ≠ ∅ ) | ||
| Assertion | catcone0 | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑍 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcocl.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | catcocl.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | catcocl.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | catcocl.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | catcocl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | catcocl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | catcocl.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | catcone0.f | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) | |
| 9 | catcone0.g | ⊢ ( 𝜑 → ( 𝑌 𝐻 𝑍 ) ≠ ∅ ) | |
| 10 | n0 | ⊢ ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 11 | n0 | ⊢ ( ( 𝑌 𝐻 𝑍 ) ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) | |
| 12 | 10 11 | anbi12i | ⊢ ( ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ∧ ( 𝑌 𝐻 𝑍 ) ≠ ∅ ) ↔ ( ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ) |
| 13 | exdistrv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ↔ ( ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ) | |
| 14 | 12 13 | sylbb2 | ⊢ ( ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ∧ ( 𝑌 𝐻 𝑍 ) ≠ ∅ ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ) |
| 15 | 8 9 14 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑓 ∃ 𝑔 ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ) |
| 16 | 15 | ancli | ⊢ ( 𝜑 → ( 𝜑 ∧ ∃ 𝑓 ∃ 𝑔 ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ) ) |
| 17 | 19.42vv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ) ↔ ( 𝜑 ∧ ∃ 𝑓 ∃ 𝑔 ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ) ) | |
| 18 | 17 | biimpri | ⊢ ( ( 𝜑 ∧ ∃ 𝑓 ∃ 𝑔 ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ) ) |
| 19 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ) → 𝐶 ∈ Cat ) |
| 20 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 21 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 22 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ) → 𝑍 ∈ 𝐵 ) |
| 23 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 24 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ) → 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) | |
| 25 | 1 2 3 19 20 21 22 23 24 | catcocl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ) → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ∈ ( 𝑋 𝐻 𝑍 ) ) |
| 26 | 25 | 2eximi | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ∈ ( 𝑋 𝐻 𝑍 ) ) |
| 27 | ne0i | ⊢ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ∈ ( 𝑋 𝐻 𝑍 ) → ( 𝑋 𝐻 𝑍 ) ≠ ∅ ) | |
| 28 | 27 | exlimivv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ∈ ( 𝑋 𝐻 𝑍 ) → ( 𝑋 𝐻 𝑍 ) ≠ ∅ ) |
| 29 | 16 18 26 28 | 4syl | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑍 ) ≠ ∅ ) |