This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The alternate definition of the cardinal of a set given in cardval2 has the curious property that for non-numerable sets (for which ndmfv yields (/) ), it still evaluates to a nonempty set, and indeed it contains _om . (Contributed by Mario Carneiro, 15-Jan-2013) (Revised by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | card2inf.1 | |- A e. _V |
|
| Assertion | card2inf | |- ( -. E. y e. On y ~~ A -> _om C_ { x e. On | x ~< A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | card2inf.1 | |- A e. _V |
|
| 2 | breq1 | |- ( x = (/) -> ( x ~< A <-> (/) ~< A ) ) |
|
| 3 | breq1 | |- ( x = n -> ( x ~< A <-> n ~< A ) ) |
|
| 4 | breq1 | |- ( x = suc n -> ( x ~< A <-> suc n ~< A ) ) |
|
| 5 | 0elon | |- (/) e. On |
|
| 6 | breq1 | |- ( y = (/) -> ( y ~~ A <-> (/) ~~ A ) ) |
|
| 7 | 6 | rspcev | |- ( ( (/) e. On /\ (/) ~~ A ) -> E. y e. On y ~~ A ) |
| 8 | 5 7 | mpan | |- ( (/) ~~ A -> E. y e. On y ~~ A ) |
| 9 | 8 | con3i | |- ( -. E. y e. On y ~~ A -> -. (/) ~~ A ) |
| 10 | 1 | 0dom | |- (/) ~<_ A |
| 11 | brsdom | |- ( (/) ~< A <-> ( (/) ~<_ A /\ -. (/) ~~ A ) ) |
|
| 12 | 10 11 | mpbiran | |- ( (/) ~< A <-> -. (/) ~~ A ) |
| 13 | 9 12 | sylibr | |- ( -. E. y e. On y ~~ A -> (/) ~< A ) |
| 14 | sucdom2 | |- ( n ~< A -> suc n ~<_ A ) |
|
| 15 | 14 | ad2antll | |- ( ( n e. _om /\ ( -. E. y e. On y ~~ A /\ n ~< A ) ) -> suc n ~<_ A ) |
| 16 | nnon | |- ( n e. _om -> n e. On ) |
|
| 17 | onsuc | |- ( n e. On -> suc n e. On ) |
|
| 18 | breq1 | |- ( y = suc n -> ( y ~~ A <-> suc n ~~ A ) ) |
|
| 19 | 18 | rspcev | |- ( ( suc n e. On /\ suc n ~~ A ) -> E. y e. On y ~~ A ) |
| 20 | 19 | ex | |- ( suc n e. On -> ( suc n ~~ A -> E. y e. On y ~~ A ) ) |
| 21 | 16 17 20 | 3syl | |- ( n e. _om -> ( suc n ~~ A -> E. y e. On y ~~ A ) ) |
| 22 | 21 | con3dimp | |- ( ( n e. _om /\ -. E. y e. On y ~~ A ) -> -. suc n ~~ A ) |
| 23 | 22 | adantrr | |- ( ( n e. _om /\ ( -. E. y e. On y ~~ A /\ n ~< A ) ) -> -. suc n ~~ A ) |
| 24 | brsdom | |- ( suc n ~< A <-> ( suc n ~<_ A /\ -. suc n ~~ A ) ) |
|
| 25 | 15 23 24 | sylanbrc | |- ( ( n e. _om /\ ( -. E. y e. On y ~~ A /\ n ~< A ) ) -> suc n ~< A ) |
| 26 | 25 | exp32 | |- ( n e. _om -> ( -. E. y e. On y ~~ A -> ( n ~< A -> suc n ~< A ) ) ) |
| 27 | 2 3 4 13 26 | finds2 | |- ( x e. _om -> ( -. E. y e. On y ~~ A -> x ~< A ) ) |
| 28 | 27 | com12 | |- ( -. E. y e. On y ~~ A -> ( x e. _om -> x ~< A ) ) |
| 29 | 28 | ralrimiv | |- ( -. E. y e. On y ~~ A -> A. x e. _om x ~< A ) |
| 30 | omsson | |- _om C_ On |
|
| 31 | ssrab | |- ( _om C_ { x e. On | x ~< A } <-> ( _om C_ On /\ A. x e. _om x ~< A ) ) |
|
| 32 | 30 31 | mpbiran | |- ( _om C_ { x e. On | x ~< A } <-> A. x e. _om x ~< A ) |
| 33 | 29 32 | sylibr | |- ( -. E. y e. On y ~~ A -> _om C_ { x e. On | x ~< A } ) |