This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of Gleason p. 217. (For the first half see rebtwnz .) (Contributed by NM, 12-Mar-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | btwnzge0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≤ 𝐴 ∧ 𝐴 < ( 𝑁 + 1 ) ) ) → ( 0 ≤ 𝐴 ↔ 0 ≤ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | ⊢ 0 ∈ ℤ | |
| 2 | flge | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ 𝐴 ↔ 0 ≤ ( ⌊ ‘ 𝐴 ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ 0 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≤ 𝐴 ∧ 𝐴 < ( 𝑁 + 1 ) ) ) → ( 0 ≤ 𝐴 ↔ 0 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 5 | flbi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) = 𝑁 ↔ ( 𝑁 ≤ 𝐴 ∧ 𝐴 < ( 𝑁 + 1 ) ) ) ) | |
| 6 | 5 | biimpar | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≤ 𝐴 ∧ 𝐴 < ( 𝑁 + 1 ) ) ) → ( ⌊ ‘ 𝐴 ) = 𝑁 ) |
| 7 | 6 | breq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≤ 𝐴 ∧ 𝐴 < ( 𝑁 + 1 ) ) ) → ( 0 ≤ ( ⌊ ‘ 𝐴 ) ↔ 0 ≤ 𝑁 ) ) |
| 8 | 4 7 | bitrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≤ 𝐴 ∧ 𝐴 < ( 𝑁 + 1 ) ) ) → ( 0 ≤ 𝐴 ↔ 0 ≤ 𝑁 ) ) |