This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of Gleason p. 217. (For the first half see rebtwnz .) (Contributed by NM, 12-Mar-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | btwnzge0 | |- ( ( ( A e. RR /\ N e. ZZ ) /\ ( N <_ A /\ A < ( N + 1 ) ) ) -> ( 0 <_ A <-> 0 <_ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | |- 0 e. ZZ |
|
| 2 | flge | |- ( ( A e. RR /\ 0 e. ZZ ) -> ( 0 <_ A <-> 0 <_ ( |_ ` A ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. RR -> ( 0 <_ A <-> 0 <_ ( |_ ` A ) ) ) |
| 4 | 3 | ad2antrr | |- ( ( ( A e. RR /\ N e. ZZ ) /\ ( N <_ A /\ A < ( N + 1 ) ) ) -> ( 0 <_ A <-> 0 <_ ( |_ ` A ) ) ) |
| 5 | flbi | |- ( ( A e. RR /\ N e. ZZ ) -> ( ( |_ ` A ) = N <-> ( N <_ A /\ A < ( N + 1 ) ) ) ) |
|
| 6 | 5 | biimpar | |- ( ( ( A e. RR /\ N e. ZZ ) /\ ( N <_ A /\ A < ( N + 1 ) ) ) -> ( |_ ` A ) = N ) |
| 7 | 6 | breq2d | |- ( ( ( A e. RR /\ N e. ZZ ) /\ ( N <_ A /\ A < ( N + 1 ) ) ) -> ( 0 <_ ( |_ ` A ) <-> 0 <_ N ) ) |
| 8 | 4 7 | bitrd | |- ( ( ( A e. RR /\ N e. ZZ ) /\ ( N <_ A /\ A < ( N + 1 ) ) ) -> ( 0 <_ A <-> 0 <_ N ) ) |