This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the upper bound relationship functor. See brub for value. (Contributed by Scott Fenton, 3-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ub | ⊢ UB 𝑅 = ( ( V × V ) ∖ ( ( V ∖ 𝑅 ) ∘ ◡ E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | ⊢ 𝑅 | |
| 1 | 0 | cub | ⊢ UB 𝑅 |
| 2 | cvv | ⊢ V | |
| 3 | 2 2 | cxp | ⊢ ( V × V ) |
| 4 | 2 0 | cdif | ⊢ ( V ∖ 𝑅 ) |
| 5 | cep | ⊢ E | |
| 6 | 5 | ccnv | ⊢ ◡ E |
| 7 | 4 6 | ccom | ⊢ ( ( V ∖ 𝑅 ) ∘ ◡ E ) |
| 8 | 3 7 | cdif | ⊢ ( ( V × V ) ∖ ( ( V ∖ 𝑅 ) ∘ ◡ E ) ) |
| 9 | 1 8 | wceq | ⊢ UB 𝑅 = ( ( V × V ) ∖ ( ( V ∖ 𝑅 ) ∘ ◡ E ) ) |