This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation form of the upper bound functor. (Contributed by Scott Fenton, 3-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brub.1 | |- S e. _V |
|
| brub.2 | |- A e. _V |
||
| Assertion | brub | |- ( S UB R A <-> A. x e. S x R A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brub.1 | |- S e. _V |
|
| 2 | brub.2 | |- A e. _V |
|
| 3 | brxp | |- ( S ( _V X. _V ) A <-> ( S e. _V /\ A e. _V ) ) |
|
| 4 | 1 2 3 | mpbir2an | |- S ( _V X. _V ) A |
| 5 | brdif | |- ( S ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) A <-> ( S ( _V X. _V ) A /\ -. S ( ( _V \ R ) o. `' _E ) A ) ) |
|
| 6 | 4 5 | mpbiran | |- ( S ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) A <-> -. S ( ( _V \ R ) o. `' _E ) A ) |
| 7 | 1 2 | coepr | |- ( S ( ( _V \ R ) o. `' _E ) A <-> E. x e. S x ( _V \ R ) A ) |
| 8 | 6 7 | xchbinx | |- ( S ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) A <-> -. E. x e. S x ( _V \ R ) A ) |
| 9 | df-ub | |- UB R = ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) |
|
| 10 | 9 | breqi | |- ( S UB R A <-> S ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) A ) |
| 11 | brv | |- x _V A |
|
| 12 | brdif | |- ( x ( _V \ R ) A <-> ( x _V A /\ -. x R A ) ) |
|
| 13 | 11 12 | mpbiran | |- ( x ( _V \ R ) A <-> -. x R A ) |
| 14 | 13 | rexbii | |- ( E. x e. S x ( _V \ R ) A <-> E. x e. S -. x R A ) |
| 15 | rexnal | |- ( E. x e. S -. x R A <-> -. A. x e. S x R A ) |
|
| 16 | 14 15 | bitri | |- ( E. x e. S x ( _V \ R ) A <-> -. A. x e. S x R A ) |
| 17 | 16 | con2bii | |- ( A. x e. S x R A <-> -. E. x e. S x ( _V \ R ) A ) |
| 18 | 8 10 17 | 3bitr4i | |- ( S UB R A <-> A. x e. S x R A ) |