This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation on a restriction. (Contributed by Peter Mazsa, 2-Jan-2019) (Revised by Peter Mazsa, 16-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brres2 | ⊢ ( 𝐵 ( 𝑅 ↾ 𝐴 ) 𝐶 ↔ 𝐵 ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brres | ⊢ ( 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) → ( 𝐵 ( 𝑅 ↾ 𝐴 ) 𝐶 ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 𝑅 𝐶 ) ) ) | |
| 2 | 1 | pm5.32i | ⊢ ( ( 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 ( 𝑅 ↾ 𝐴 ) 𝐶 ) ↔ ( 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐵 𝑅 𝐶 ) ) ) |
| 3 | relres | ⊢ Rel ( 𝑅 ↾ 𝐴 ) | |
| 4 | 3 | relelrni | ⊢ ( 𝐵 ( 𝑅 ↾ 𝐴 ) 𝐶 → 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ) |
| 5 | 4 | pm4.71ri | ⊢ ( 𝐵 ( 𝑅 ↾ 𝐴 ) 𝐶 ↔ ( 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 ( 𝑅 ↾ 𝐴 ) 𝐶 ) ) |
| 6 | brinxp2 | ⊢ ( 𝐵 ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) 𝐶 ↔ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ) ∧ 𝐵 𝑅 𝐶 ) ) | |
| 7 | df-3an | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 𝑅 𝐶 ) ↔ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ) ∧ 𝐵 𝑅 𝐶 ) ) | |
| 8 | 3anan12 | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 𝑅 𝐶 ) ↔ ( 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐵 𝑅 𝐶 ) ) ) | |
| 9 | 6 7 8 | 3bitr2i | ⊢ ( 𝐵 ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) 𝐶 ↔ ( 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐵 𝑅 𝐶 ) ) ) |
| 10 | 2 5 9 | 3bitr4i | ⊢ ( 𝐵 ( 𝑅 ↾ 𝐴 ) 𝐶 ↔ 𝐵 ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) 𝐶 ) |