This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation on the converse of a restriction. (Contributed by Peter Mazsa, 27-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | br1cnvres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ◡ ( 𝑅 ↾ 𝐴 ) 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐶 𝑅 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | ⊢ ( 𝑅 ↾ 𝐴 ) = ( 𝑅 ∩ ( 𝐴 × V ) ) | |
| 2 | 1 | cnveqi | ⊢ ◡ ( 𝑅 ↾ 𝐴 ) = ◡ ( 𝑅 ∩ ( 𝐴 × V ) ) |
| 3 | 2 | breqi | ⊢ ( 𝐵 ◡ ( 𝑅 ↾ 𝐴 ) 𝐶 ↔ 𝐵 ◡ ( 𝑅 ∩ ( 𝐴 × V ) ) 𝐶 ) |
| 4 | elex | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ V ) | |
| 5 | br1cnvinxp | ⊢ ( 𝐵 ◡ ( 𝑅 ∩ ( 𝐴 × V ) ) 𝐶 ↔ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ 𝐴 ) ∧ 𝐶 𝑅 𝐵 ) ) | |
| 6 | anass | ⊢ ( ( ( 𝐵 ∈ V ∧ 𝐶 ∈ 𝐴 ) ∧ 𝐶 𝑅 𝐵 ) ↔ ( 𝐵 ∈ V ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐶 𝑅 𝐵 ) ) ) | |
| 7 | 5 6 | bitri | ⊢ ( 𝐵 ◡ ( 𝑅 ∩ ( 𝐴 × V ) ) 𝐶 ↔ ( 𝐵 ∈ V ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐶 𝑅 𝐵 ) ) ) |
| 8 | 7 | baib | ⊢ ( 𝐵 ∈ V → ( 𝐵 ◡ ( 𝑅 ∩ ( 𝐴 × V ) ) 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐶 𝑅 𝐵 ) ) ) |
| 9 | 4 8 | syl | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ◡ ( 𝑅 ∩ ( 𝐴 × V ) ) 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐶 𝑅 𝐵 ) ) ) |
| 10 | 3 9 | bitrid | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ◡ ( 𝑅 ↾ 𝐴 ) 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐶 𝑅 𝐵 ) ) ) |