This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation on a restriction. (Contributed by Peter Mazsa, 2-Jan-2019) (Revised by Peter Mazsa, 16-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brres2 | |- ( B ( R |` A ) C <-> B ( R i^i ( A X. ran ( R |` A ) ) ) C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brres | |- ( C e. ran ( R |` A ) -> ( B ( R |` A ) C <-> ( B e. A /\ B R C ) ) ) |
|
| 2 | 1 | pm5.32i | |- ( ( C e. ran ( R |` A ) /\ B ( R |` A ) C ) <-> ( C e. ran ( R |` A ) /\ ( B e. A /\ B R C ) ) ) |
| 3 | relres | |- Rel ( R |` A ) |
|
| 4 | 3 | relelrni | |- ( B ( R |` A ) C -> C e. ran ( R |` A ) ) |
| 5 | 4 | pm4.71ri | |- ( B ( R |` A ) C <-> ( C e. ran ( R |` A ) /\ B ( R |` A ) C ) ) |
| 6 | brinxp2 | |- ( B ( R i^i ( A X. ran ( R |` A ) ) ) C <-> ( ( B e. A /\ C e. ran ( R |` A ) ) /\ B R C ) ) |
|
| 7 | df-3an | |- ( ( B e. A /\ C e. ran ( R |` A ) /\ B R C ) <-> ( ( B e. A /\ C e. ran ( R |` A ) ) /\ B R C ) ) |
|
| 8 | 3anan12 | |- ( ( B e. A /\ C e. ran ( R |` A ) /\ B R C ) <-> ( C e. ran ( R |` A ) /\ ( B e. A /\ B R C ) ) ) |
|
| 9 | 6 7 8 | 3bitr2i | |- ( B ( R i^i ( A X. ran ( R |` A ) ) ) C <-> ( C e. ran ( R |` A ) /\ ( B e. A /\ B R C ) ) ) |
| 10 | 2 5 9 | 3bitr4i | |- ( B ( R |` A ) C <-> B ( R i^i ( A X. ran ( R |` A ) ) ) C ) |