This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterize a quaternary relation over a tail Cartesian product. Together with pprodss4v , this completely defines membership in a parallel product. (Contributed by Scott Fenton, 11-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brpprod.1 | |- X e. _V |
|
| brpprod.2 | |- Y e. _V |
||
| brpprod.3 | |- Z e. _V |
||
| brpprod.4 | |- W e. _V |
||
| Assertion | brpprod | |- ( <. X , Y >. pprod ( A , B ) <. Z , W >. <-> ( X A Z /\ Y B W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brpprod.1 | |- X e. _V |
|
| 2 | brpprod.2 | |- Y e. _V |
|
| 3 | brpprod.3 | |- Z e. _V |
|
| 4 | brpprod.4 | |- W e. _V |
|
| 5 | df-pprod | |- pprod ( A , B ) = ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) |
|
| 6 | 5 | breqi | |- ( <. X , Y >. pprod ( A , B ) <. Z , W >. <-> <. X , Y >. ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) <. Z , W >. ) |
| 7 | opex | |- <. X , Y >. e. _V |
|
| 8 | 7 3 4 | brtxp | |- ( <. X , Y >. ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) <. Z , W >. <-> ( <. X , Y >. ( A o. ( 1st |` ( _V X. _V ) ) ) Z /\ <. X , Y >. ( B o. ( 2nd |` ( _V X. _V ) ) ) W ) ) |
| 9 | 7 3 | brco | |- ( <. X , Y >. ( A o. ( 1st |` ( _V X. _V ) ) ) Z <-> E. x ( <. X , Y >. ( 1st |` ( _V X. _V ) ) x /\ x A Z ) ) |
| 10 | 1 2 | opelvv | |- <. X , Y >. e. ( _V X. _V ) |
| 11 | vex | |- x e. _V |
|
| 12 | 11 | brresi | |- ( <. X , Y >. ( 1st |` ( _V X. _V ) ) x <-> ( <. X , Y >. e. ( _V X. _V ) /\ <. X , Y >. 1st x ) ) |
| 13 | 10 12 | mpbiran | |- ( <. X , Y >. ( 1st |` ( _V X. _V ) ) x <-> <. X , Y >. 1st x ) |
| 14 | 1 2 | br1steq | |- ( <. X , Y >. 1st x <-> x = X ) |
| 15 | 13 14 | bitri | |- ( <. X , Y >. ( 1st |` ( _V X. _V ) ) x <-> x = X ) |
| 16 | 15 | anbi1i | |- ( ( <. X , Y >. ( 1st |` ( _V X. _V ) ) x /\ x A Z ) <-> ( x = X /\ x A Z ) ) |
| 17 | 16 | exbii | |- ( E. x ( <. X , Y >. ( 1st |` ( _V X. _V ) ) x /\ x A Z ) <-> E. x ( x = X /\ x A Z ) ) |
| 18 | breq1 | |- ( x = X -> ( x A Z <-> X A Z ) ) |
|
| 19 | 1 18 | ceqsexv | |- ( E. x ( x = X /\ x A Z ) <-> X A Z ) |
| 20 | 9 17 19 | 3bitri | |- ( <. X , Y >. ( A o. ( 1st |` ( _V X. _V ) ) ) Z <-> X A Z ) |
| 21 | 7 4 | brco | |- ( <. X , Y >. ( B o. ( 2nd |` ( _V X. _V ) ) ) W <-> E. y ( <. X , Y >. ( 2nd |` ( _V X. _V ) ) y /\ y B W ) ) |
| 22 | vex | |- y e. _V |
|
| 23 | 22 | brresi | |- ( <. X , Y >. ( 2nd |` ( _V X. _V ) ) y <-> ( <. X , Y >. e. ( _V X. _V ) /\ <. X , Y >. 2nd y ) ) |
| 24 | 10 23 | mpbiran | |- ( <. X , Y >. ( 2nd |` ( _V X. _V ) ) y <-> <. X , Y >. 2nd y ) |
| 25 | 1 2 | br2ndeq | |- ( <. X , Y >. 2nd y <-> y = Y ) |
| 26 | 24 25 | bitri | |- ( <. X , Y >. ( 2nd |` ( _V X. _V ) ) y <-> y = Y ) |
| 27 | 26 | anbi1i | |- ( ( <. X , Y >. ( 2nd |` ( _V X. _V ) ) y /\ y B W ) <-> ( y = Y /\ y B W ) ) |
| 28 | 27 | exbii | |- ( E. y ( <. X , Y >. ( 2nd |` ( _V X. _V ) ) y /\ y B W ) <-> E. y ( y = Y /\ y B W ) ) |
| 29 | breq1 | |- ( y = Y -> ( y B W <-> Y B W ) ) |
|
| 30 | 2 29 | ceqsexv | |- ( E. y ( y = Y /\ y B W ) <-> Y B W ) |
| 31 | 21 28 30 | 3bitri | |- ( <. X , Y >. ( B o. ( 2nd |` ( _V X. _V ) ) ) W <-> Y B W ) |
| 32 | 20 31 | anbi12i | |- ( ( <. X , Y >. ( A o. ( 1st |` ( _V X. _V ) ) ) Z /\ <. X , Y >. ( B o. ( 2nd |` ( _V X. _V ) ) ) W ) <-> ( X A Z /\ Y B W ) ) |
| 33 | 6 8 32 | 3bitri | |- ( <. X , Y >. pprod ( A , B ) <. Z , W >. <-> ( X A Z /\ Y B W ) ) |