This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the partition predicate (read: A is a partition by R ). Alternative definition is dfpart2 . The binary partition and the partition predicate are the same if A and R are sets, cf. brpartspart . (Contributed by Peter Mazsa, 12-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-part | ⊢ ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | ⊢ 𝑅 | |
| 1 | cA | ⊢ 𝐴 | |
| 2 | 1 0 | wpart | ⊢ 𝑅 Part 𝐴 |
| 3 | 0 | wdisjALTV | ⊢ Disj 𝑅 |
| 4 | 1 0 | wdmqs | ⊢ 𝑅 DomainQs 𝐴 |
| 5 | 3 4 | wa | ⊢ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴 ) |
| 6 | 2 5 | wb | ⊢ ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴 ) ) |