This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A and R are sets, the domain quotient binary relation and the domain quotient predicate are the same. (Contributed by Peter Mazsa, 14-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brdmqssqs | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑅 DomainQss 𝐴 ↔ 𝑅 DomainQs 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdmqss | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑅 DomainQss 𝐴 ↔ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) | |
| 2 | df-dmqs | ⊢ ( 𝑅 DomainQs 𝐴 ↔ ( dom 𝑅 / 𝑅 ) = 𝐴 ) | |
| 3 | 1 2 | bitr4di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑅 DomainQss 𝐴 ↔ 𝑅 DomainQs 𝐴 ) ) |