This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The element of the class of disjoint relations and the disjoint relation predicate are the same, that is ( R e. Disjs <-> Disj R ) when R is a set. (Contributed by Peter Mazsa, 25-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldisjsdisj | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ Disjs ↔ Disj 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosscnvex | ⊢ ( 𝑅 ∈ 𝑉 → ≀ ◡ 𝑅 ∈ V ) | |
| 2 | elcnvrefrelsrel | ⊢ ( ≀ ◡ 𝑅 ∈ V → ( ≀ ◡ 𝑅 ∈ CnvRefRels ↔ CnvRefRel ≀ ◡ 𝑅 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑅 ∈ 𝑉 → ( ≀ ◡ 𝑅 ∈ CnvRefRels ↔ CnvRefRel ≀ ◡ 𝑅 ) ) |
| 4 | elrelsrel | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ Rels ↔ Rel 𝑅 ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝑅 ∈ 𝑉 → ( ( ≀ ◡ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ) ↔ ( CnvRefRel ≀ ◡ 𝑅 ∧ Rel 𝑅 ) ) ) |
| 6 | eldisjs | ⊢ ( 𝑅 ∈ Disjs ↔ ( ≀ ◡ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ) ) | |
| 7 | df-disjALTV | ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡ 𝑅 ∧ Rel 𝑅 ) ) | |
| 8 | 5 6 7 | 3bitr4g | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ Disjs ↔ Disj 𝑅 ) ) |