This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any class whose elements have bounded rank is a set. Proposition 9.19 of TakeutiZaring p. 80. (Contributed by NM, 13-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bndrank | ⊢ ( ∃ 𝑥 ∈ On ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ⊆ 𝑥 → 𝐴 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankon | ⊢ ( rank ‘ 𝑦 ) ∈ On | |
| 2 | 1 | onordi | ⊢ Ord ( rank ‘ 𝑦 ) |
| 3 | eloni | ⊢ ( 𝑥 ∈ On → Ord 𝑥 ) | |
| 4 | ordsucsssuc | ⊢ ( ( Ord ( rank ‘ 𝑦 ) ∧ Ord 𝑥 ) → ( ( rank ‘ 𝑦 ) ⊆ 𝑥 ↔ suc ( rank ‘ 𝑦 ) ⊆ suc 𝑥 ) ) | |
| 5 | 2 3 4 | sylancr | ⊢ ( 𝑥 ∈ On → ( ( rank ‘ 𝑦 ) ⊆ 𝑥 ↔ suc ( rank ‘ 𝑦 ) ⊆ suc 𝑥 ) ) |
| 6 | 1 | onsuci | ⊢ suc ( rank ‘ 𝑦 ) ∈ On |
| 7 | onsuc | ⊢ ( 𝑥 ∈ On → suc 𝑥 ∈ On ) | |
| 8 | r1ord3 | ⊢ ( ( suc ( rank ‘ 𝑦 ) ∈ On ∧ suc 𝑥 ∈ On ) → ( suc ( rank ‘ 𝑦 ) ⊆ suc 𝑥 → ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ⊆ ( 𝑅1 ‘ suc 𝑥 ) ) ) | |
| 9 | 6 7 8 | sylancr | ⊢ ( 𝑥 ∈ On → ( suc ( rank ‘ 𝑦 ) ⊆ suc 𝑥 → ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ⊆ ( 𝑅1 ‘ suc 𝑥 ) ) ) |
| 10 | 5 9 | sylbid | ⊢ ( 𝑥 ∈ On → ( ( rank ‘ 𝑦 ) ⊆ 𝑥 → ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ⊆ ( 𝑅1 ‘ suc 𝑥 ) ) ) |
| 11 | vex | ⊢ 𝑦 ∈ V | |
| 12 | 11 | rankid | ⊢ 𝑦 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) |
| 13 | ssel | ⊢ ( ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ⊆ ( 𝑅1 ‘ suc 𝑥 ) → ( 𝑦 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) → 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) ) | |
| 14 | 10 12 13 | syl6mpi | ⊢ ( 𝑥 ∈ On → ( ( rank ‘ 𝑦 ) ⊆ 𝑥 → 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) ) |
| 15 | 14 | ralimdv | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ⊆ 𝑥 → ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) ) |
| 16 | dfss3 | ⊢ ( 𝐴 ⊆ ( 𝑅1 ‘ suc 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) | |
| 17 | fvex | ⊢ ( 𝑅1 ‘ suc 𝑥 ) ∈ V | |
| 18 | 17 | ssex | ⊢ ( 𝐴 ⊆ ( 𝑅1 ‘ suc 𝑥 ) → 𝐴 ∈ V ) |
| 19 | 16 18 | sylbir | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) → 𝐴 ∈ V ) |
| 20 | 15 19 | syl6 | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ⊆ 𝑥 → 𝐴 ∈ V ) ) |
| 21 | 20 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ On ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ⊆ 𝑥 → 𝐴 ∈ V ) |