This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any class whose elements have bounded rank is a set. Proposition 9.19 of TakeutiZaring p. 80. (Contributed by NM, 13-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bndrank | |- ( E. x e. On A. y e. A ( rank ` y ) C_ x -> A e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankon | |- ( rank ` y ) e. On |
|
| 2 | 1 | onordi | |- Ord ( rank ` y ) |
| 3 | eloni | |- ( x e. On -> Ord x ) |
|
| 4 | ordsucsssuc | |- ( ( Ord ( rank ` y ) /\ Ord x ) -> ( ( rank ` y ) C_ x <-> suc ( rank ` y ) C_ suc x ) ) |
|
| 5 | 2 3 4 | sylancr | |- ( x e. On -> ( ( rank ` y ) C_ x <-> suc ( rank ` y ) C_ suc x ) ) |
| 6 | 1 | onsuci | |- suc ( rank ` y ) e. On |
| 7 | onsuc | |- ( x e. On -> suc x e. On ) |
|
| 8 | r1ord3 | |- ( ( suc ( rank ` y ) e. On /\ suc x e. On ) -> ( suc ( rank ` y ) C_ suc x -> ( R1 ` suc ( rank ` y ) ) C_ ( R1 ` suc x ) ) ) |
|
| 9 | 6 7 8 | sylancr | |- ( x e. On -> ( suc ( rank ` y ) C_ suc x -> ( R1 ` suc ( rank ` y ) ) C_ ( R1 ` suc x ) ) ) |
| 10 | 5 9 | sylbid | |- ( x e. On -> ( ( rank ` y ) C_ x -> ( R1 ` suc ( rank ` y ) ) C_ ( R1 ` suc x ) ) ) |
| 11 | vex | |- y e. _V |
|
| 12 | 11 | rankid | |- y e. ( R1 ` suc ( rank ` y ) ) |
| 13 | ssel | |- ( ( R1 ` suc ( rank ` y ) ) C_ ( R1 ` suc x ) -> ( y e. ( R1 ` suc ( rank ` y ) ) -> y e. ( R1 ` suc x ) ) ) |
|
| 14 | 10 12 13 | syl6mpi | |- ( x e. On -> ( ( rank ` y ) C_ x -> y e. ( R1 ` suc x ) ) ) |
| 15 | 14 | ralimdv | |- ( x e. On -> ( A. y e. A ( rank ` y ) C_ x -> A. y e. A y e. ( R1 ` suc x ) ) ) |
| 16 | dfss3 | |- ( A C_ ( R1 ` suc x ) <-> A. y e. A y e. ( R1 ` suc x ) ) |
|
| 17 | fvex | |- ( R1 ` suc x ) e. _V |
|
| 18 | 17 | ssex | |- ( A C_ ( R1 ` suc x ) -> A e. _V ) |
| 19 | 16 18 | sylbir | |- ( A. y e. A y e. ( R1 ` suc x ) -> A e. _V ) |
| 20 | 15 19 | syl6 | |- ( x e. On -> ( A. y e. A ( rank ` y ) C_ x -> A e. _V ) ) |
| 21 | 20 | rexlimiv | |- ( E. x e. On A. y e. A ( rank ` y ) C_ x -> A e. _V ) |