This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The elements of a proper class have unbounded rank. Exercise 2 of TakeutiZaring p. 80. (Contributed by NM, 13-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unbndrank | ⊢ ( ¬ 𝐴 ∈ V → ∀ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( rank ‘ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankon | ⊢ ( rank ‘ 𝑦 ) ∈ On | |
| 2 | ontri1 | ⊢ ( ( ( rank ‘ 𝑦 ) ∈ On ∧ 𝑥 ∈ On ) → ( ( rank ‘ 𝑦 ) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ( rank ‘ 𝑦 ) ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝑥 ∈ On → ( ( rank ‘ 𝑦 ) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ( rank ‘ 𝑦 ) ) ) |
| 4 | 3 | ralbidv | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ ( rank ‘ 𝑦 ) ) ) |
| 5 | ralnex | ⊢ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ ( rank ‘ 𝑦 ) ↔ ¬ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( rank ‘ 𝑦 ) ) | |
| 6 | 4 5 | bitrdi | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ⊆ 𝑥 ↔ ¬ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( rank ‘ 𝑦 ) ) ) |
| 7 | 6 | rexbiia | ⊢ ( ∃ 𝑥 ∈ On ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ⊆ 𝑥 ↔ ∃ 𝑥 ∈ On ¬ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( rank ‘ 𝑦 ) ) |
| 8 | rexnal | ⊢ ( ∃ 𝑥 ∈ On ¬ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( rank ‘ 𝑦 ) ↔ ¬ ∀ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( rank ‘ 𝑦 ) ) | |
| 9 | 7 8 | bitri | ⊢ ( ∃ 𝑥 ∈ On ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ⊆ 𝑥 ↔ ¬ ∀ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( rank ‘ 𝑦 ) ) |
| 10 | bndrank | ⊢ ( ∃ 𝑥 ∈ On ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ⊆ 𝑥 → 𝐴 ∈ V ) | |
| 11 | 9 10 | sylbir | ⊢ ( ¬ ∀ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( rank ‘ 𝑦 ) → 𝐴 ∈ V ) |
| 12 | 11 | con1i | ⊢ ( ¬ 𝐴 ∈ V → ∀ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( rank ‘ 𝑦 ) ) |