This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinity ball in an extended metric acts like an ultrametric ball in that every point in the ball is also its center. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blpnfctr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) = ( 𝐴 ( ball ‘ 𝐷 ) +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( ◡ 𝐷 “ ℝ ) = ( ◡ 𝐷 “ ℝ ) | |
| 2 | 1 | xmeter | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ◡ 𝐷 “ ℝ ) Er 𝑋 ) |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → ( ◡ 𝐷 “ ℝ ) Er 𝑋 ) |
| 4 | simp3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) | |
| 5 | 1 | xmetec | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) = ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) = ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) |
| 7 | 4 6 | eleqtrrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → 𝐴 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ) |
| 8 | elecg | ⊢ ( ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐴 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ↔ 𝑃 ( ◡ 𝐷 “ ℝ ) 𝐴 ) ) | |
| 9 | 8 | ancoms | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → ( 𝐴 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ↔ 𝑃 ( ◡ 𝐷 “ ℝ ) 𝐴 ) ) |
| 10 | 9 | 3adant1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → ( 𝐴 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ↔ 𝑃 ( ◡ 𝐷 “ ℝ ) 𝐴 ) ) |
| 11 | 7 10 | mpbid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → 𝑃 ( ◡ 𝐷 “ ℝ ) 𝐴 ) |
| 12 | 3 11 | erthi | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) = [ 𝐴 ] ( ◡ 𝐷 “ ℝ ) ) |
| 13 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 14 | blssm | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ +∞ ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ⊆ 𝑋 ) | |
| 15 | 13 14 | mp3an3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ⊆ 𝑋 ) |
| 16 | 15 | sselda | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → 𝐴 ∈ 𝑋 ) |
| 17 | 1 | xmetec | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ( ◡ 𝐷 “ ℝ ) = ( 𝐴 ( ball ‘ 𝐷 ) +∞ ) ) |
| 18 | 17 | adantlr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ( ◡ 𝐷 “ ℝ ) = ( 𝐴 ( ball ‘ 𝐷 ) +∞ ) ) |
| 19 | 16 18 | syldan | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → [ 𝐴 ] ( ◡ 𝐷 “ ℝ ) = ( 𝐴 ( ball ‘ 𝐷 ) +∞ ) ) |
| 20 | 19 | 3impa | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → [ 𝐴 ] ( ◡ 𝐷 “ ℝ ) = ( 𝐴 ( ball ‘ 𝐷 ) +∞ ) ) |
| 21 | 12 6 20 | 3eqtr3d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) = ( 𝐴 ( ball ‘ 𝐷 ) +∞ ) ) |