This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom " ( topGenB ) = J " to express " B is a basis for topology J " since we do not have a separate notation for this. Definition 15.35 of Schechter p. 428. (Contributed by NM, 2-Feb-2008) (Proof shortened by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bastop1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ) → ( ( topGen ‘ 𝐵 ) = 𝐽 ↔ ∀ 𝑥 ∈ 𝐽 ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ) → ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐽 ) ) | |
| 2 | tgtop | ⊢ ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) = 𝐽 ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ) → ( topGen ‘ 𝐽 ) = 𝐽 ) |
| 4 | 1 3 | sseqtrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ) → ( topGen ‘ 𝐵 ) ⊆ 𝐽 ) |
| 5 | eqss | ⊢ ( ( topGen ‘ 𝐵 ) = 𝐽 ↔ ( ( topGen ‘ 𝐵 ) ⊆ 𝐽 ∧ 𝐽 ⊆ ( topGen ‘ 𝐵 ) ) ) | |
| 6 | 5 | baib | ⊢ ( ( topGen ‘ 𝐵 ) ⊆ 𝐽 → ( ( topGen ‘ 𝐵 ) = 𝐽 ↔ 𝐽 ⊆ ( topGen ‘ 𝐵 ) ) ) |
| 7 | 4 6 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ) → ( ( topGen ‘ 𝐵 ) = 𝐽 ↔ 𝐽 ⊆ ( topGen ‘ 𝐵 ) ) ) |
| 8 | dfss3 | ⊢ ( 𝐽 ⊆ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐽 𝑥 ∈ ( topGen ‘ 𝐵 ) ) | |
| 9 | 7 8 | bitrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ) → ( ( topGen ‘ 𝐵 ) = 𝐽 ↔ ∀ 𝑥 ∈ 𝐽 𝑥 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 10 | ssexg | ⊢ ( ( 𝐵 ⊆ 𝐽 ∧ 𝐽 ∈ Top ) → 𝐵 ∈ V ) | |
| 11 | 10 | ancoms | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ) → 𝐵 ∈ V ) |
| 12 | eltg3 | ⊢ ( 𝐵 ∈ V → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ) → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) |
| 14 | 13 | ralbidv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ) → ( ∀ 𝑥 ∈ 𝐽 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐽 ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) |
| 15 | 9 14 | bitrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ) → ( ( topGen ‘ 𝐵 ) = 𝐽 ↔ ∀ 𝑥 ∈ 𝐽 ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) |