This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of bastop1 that doesn't have B C_ J in the antecedent. (Contributed by NM, 3-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bastop2 | ⊢ ( 𝐽 ∈ Top → ( ( topGen ‘ 𝐵 ) = 𝐽 ↔ ( 𝐵 ⊆ 𝐽 ∧ ∀ 𝑥 ∈ 𝐽 ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( ( topGen ‘ 𝐵 ) = 𝐽 → ( ( topGen ‘ 𝐵 ) ∈ Top ↔ 𝐽 ∈ Top ) ) | |
| 2 | 1 | biimparc | ⊢ ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) → ( topGen ‘ 𝐵 ) ∈ Top ) |
| 3 | tgclb | ⊢ ( 𝐵 ∈ TopBases ↔ ( topGen ‘ 𝐵 ) ∈ Top ) | |
| 4 | 2 3 | sylibr | ⊢ ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) → 𝐵 ∈ TopBases ) |
| 5 | bastg | ⊢ ( 𝐵 ∈ TopBases → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
| 7 | simpr | ⊢ ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) → ( topGen ‘ 𝐵 ) = 𝐽 ) | |
| 8 | 6 7 | sseqtrd | ⊢ ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) → 𝐵 ⊆ 𝐽 ) |
| 9 | 8 | ex | ⊢ ( 𝐽 ∈ Top → ( ( topGen ‘ 𝐵 ) = 𝐽 → 𝐵 ⊆ 𝐽 ) ) |
| 10 | 9 | pm4.71rd | ⊢ ( 𝐽 ∈ Top → ( ( topGen ‘ 𝐵 ) = 𝐽 ↔ ( 𝐵 ⊆ 𝐽 ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) ) ) |
| 11 | bastop1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ) → ( ( topGen ‘ 𝐵 ) = 𝐽 ↔ ∀ 𝑥 ∈ 𝐽 ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) | |
| 12 | 11 | pm5.32da | ⊢ ( 𝐽 ∈ Top → ( ( 𝐵 ⊆ 𝐽 ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) ↔ ( 𝐵 ⊆ 𝐽 ∧ ∀ 𝑥 ∈ 𝐽 ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) ) |
| 13 | 10 12 | bitrd | ⊢ ( 𝐽 ∈ Top → ( ( topGen ‘ 𝐵 ) = 𝐽 ↔ ( 𝐵 ⊆ 𝐽 ∧ ∀ 𝑥 ∈ 𝐽 ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) ) |