This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom " ( topGenB ) = J " to express " B is a basis for topology J " since we do not have a separate notation for this. Definition 15.35 of Schechter p. 428. (Contributed by NM, 2-Feb-2008) (Proof shortened by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bastop1 | |- ( ( J e. Top /\ B C_ J ) -> ( ( topGen ` B ) = J <-> A. x e. J E. y ( y C_ B /\ x = U. y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgss | |- ( ( J e. Top /\ B C_ J ) -> ( topGen ` B ) C_ ( topGen ` J ) ) |
|
| 2 | tgtop | |- ( J e. Top -> ( topGen ` J ) = J ) |
|
| 3 | 2 | adantr | |- ( ( J e. Top /\ B C_ J ) -> ( topGen ` J ) = J ) |
| 4 | 1 3 | sseqtrd | |- ( ( J e. Top /\ B C_ J ) -> ( topGen ` B ) C_ J ) |
| 5 | eqss | |- ( ( topGen ` B ) = J <-> ( ( topGen ` B ) C_ J /\ J C_ ( topGen ` B ) ) ) |
|
| 6 | 5 | baib | |- ( ( topGen ` B ) C_ J -> ( ( topGen ` B ) = J <-> J C_ ( topGen ` B ) ) ) |
| 7 | 4 6 | syl | |- ( ( J e. Top /\ B C_ J ) -> ( ( topGen ` B ) = J <-> J C_ ( topGen ` B ) ) ) |
| 8 | dfss3 | |- ( J C_ ( topGen ` B ) <-> A. x e. J x e. ( topGen ` B ) ) |
|
| 9 | 7 8 | bitrdi | |- ( ( J e. Top /\ B C_ J ) -> ( ( topGen ` B ) = J <-> A. x e. J x e. ( topGen ` B ) ) ) |
| 10 | ssexg | |- ( ( B C_ J /\ J e. Top ) -> B e. _V ) |
|
| 11 | 10 | ancoms | |- ( ( J e. Top /\ B C_ J ) -> B e. _V ) |
| 12 | eltg3 | |- ( B e. _V -> ( x e. ( topGen ` B ) <-> E. y ( y C_ B /\ x = U. y ) ) ) |
|
| 13 | 11 12 | syl | |- ( ( J e. Top /\ B C_ J ) -> ( x e. ( topGen ` B ) <-> E. y ( y C_ B /\ x = U. y ) ) ) |
| 14 | 13 | ralbidv | |- ( ( J e. Top /\ B C_ J ) -> ( A. x e. J x e. ( topGen ` B ) <-> A. x e. J E. y ( y C_ B /\ x = U. y ) ) ) |
| 15 | 9 14 | bitrd | |- ( ( J e. Top /\ B C_ J ) -> ( ( topGen ` B ) = J <-> A. x e. J E. y ( y C_ B /\ x = U. y ) ) ) |