This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow is not used by the proof. When ax-pow is assumed and A is a set, both sides of the biconditional hold. In ZF, both sides hold if and only if A is a set (see pwexr ). (Contributed by NM, 22-Jun-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axpweq | |- ( ~P A e. _V <-> E. x A. y ( A. z ( z e. y -> z e. A ) -> y e. x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwidg | |- ( ~P A e. _V -> ~P A e. ~P ~P A ) |
|
| 2 | pweq | |- ( x = ~P A -> ~P x = ~P ~P A ) |
|
| 3 | 2 | eleq2d | |- ( x = ~P A -> ( ~P A e. ~P x <-> ~P A e. ~P ~P A ) ) |
| 4 | 3 | spcegv | |- ( ~P A e. _V -> ( ~P A e. ~P ~P A -> E. x ~P A e. ~P x ) ) |
| 5 | 1 4 | mpd | |- ( ~P A e. _V -> E. x ~P A e. ~P x ) |
| 6 | elex | |- ( ~P A e. ~P x -> ~P A e. _V ) |
|
| 7 | 6 | exlimiv | |- ( E. x ~P A e. ~P x -> ~P A e. _V ) |
| 8 | 5 7 | impbii | |- ( ~P A e. _V <-> E. x ~P A e. ~P x ) |
| 9 | vex | |- x e. _V |
|
| 10 | 9 | elpw2 | |- ( ~P A e. ~P x <-> ~P A C_ x ) |
| 11 | pwss | |- ( ~P A C_ x <-> A. y ( y C_ A -> y e. x ) ) |
|
| 12 | df-ss | |- ( y C_ A <-> A. z ( z e. y -> z e. A ) ) |
|
| 13 | 12 | imbi1i | |- ( ( y C_ A -> y e. x ) <-> ( A. z ( z e. y -> z e. A ) -> y e. x ) ) |
| 14 | 13 | albii | |- ( A. y ( y C_ A -> y e. x ) <-> A. y ( A. z ( z e. y -> z e. A ) -> y e. x ) ) |
| 15 | 11 14 | bitri | |- ( ~P A C_ x <-> A. y ( A. z ( z e. y -> z e. A ) -> y e. x ) ) |
| 16 | 10 15 | bitri | |- ( ~P A e. ~P x <-> A. y ( A. z ( z e. y -> z e. A ) -> y e. x ) ) |
| 17 | 16 | exbii | |- ( E. x ~P A e. ~P x <-> E. x A. y ( A. z ( z e. y -> z e. A ) -> y e. x ) ) |
| 18 | 8 17 | bitri | |- ( ~P A e. _V <-> E. x A. y ( A. z ( z e. y -> z e. A ) -> y e. x ) ) |