This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of the Axiom of Extensionality with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 14-Aug-2003) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axextnd | ⊢ ∃ 𝑥 ( ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → 𝑦 = 𝑧 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 2 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 | |
| 3 | 1 2 | nfan | ⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 4 | nfcvf | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) | |
| 5 | 4 | adantr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 ) |
| 6 | 5 | nfcrd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤 ∈ 𝑦 ) |
| 7 | nfcvf | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑧 ) | |
| 8 | 7 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧 ) |
| 9 | 8 | nfcrd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤 ∈ 𝑧 ) |
| 10 | 6 9 | nfbid | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑧 ) ) |
| 11 | elequ1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) | |
| 12 | elequ1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) | |
| 13 | 11 12 | bibi12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑧 ) ↔ ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) ) ) |
| 14 | 13 | a1i | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑧 ) ↔ ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) ) ) ) |
| 15 | 3 10 14 | cbvald | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∀ 𝑤 ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑧 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) ) ) |
| 16 | axextg | ⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑧 ) → 𝑦 = 𝑧 ) | |
| 17 | 15 16 | biimtrrdi | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 18 | 19.8a | ⊢ ( 𝑦 = 𝑧 → ∃ 𝑥 𝑦 = 𝑧 ) | |
| 19 | 17 18 | syl6 | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → ∃ 𝑥 𝑦 = 𝑧 ) ) |
| 20 | 19 | ex | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → ∃ 𝑥 𝑦 = 𝑧 ) ) ) |
| 21 | ax6e | ⊢ ∃ 𝑥 𝑥 = 𝑧 | |
| 22 | ax7 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 → 𝑦 = 𝑧 ) ) | |
| 23 | 22 | aleximi | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 𝑦 = 𝑧 ) ) |
| 24 | 21 23 | mpi | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 𝑦 = 𝑧 ) |
| 25 | 24 | a1d | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → ∃ 𝑥 𝑦 = 𝑧 ) ) |
| 26 | ax6e | ⊢ ∃ 𝑥 𝑥 = 𝑦 | |
| 27 | ax7 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑦 → 𝑧 = 𝑦 ) ) | |
| 28 | equcomi | ⊢ ( 𝑧 = 𝑦 → 𝑦 = 𝑧 ) | |
| 29 | 27 28 | syl6 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑦 → 𝑦 = 𝑧 ) ) |
| 30 | 29 | aleximi | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∃ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 𝑦 = 𝑧 ) ) |
| 31 | 26 30 | mpi | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 𝑦 = 𝑧 ) |
| 32 | 31 | a1d | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → ∃ 𝑥 𝑦 = 𝑧 ) ) |
| 33 | 20 25 32 | pm2.61ii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → ∃ 𝑥 𝑦 = 𝑧 ) |
| 34 | 33 | 19.35ri | ⊢ ∃ 𝑥 ( ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → 𝑦 = 𝑧 ) |