This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A generalization of the axiom of extensionality in which x and y need not be distinct. (Contributed by NM, 15-Sep-1993) (Proof shortened by Andrew Salmon, 12-Aug-2011) Remove dependencies on ax-10 , ax-12 , ax-13 . (Revised by BJ, 12-Jul-2019) (Revised by Wolf Lammen, 9-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axextg | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → 𝑥 = 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 | ⊢ ( 𝑤 = 𝑥 → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑥 ) ) | |
| 2 | 1 | bibi1d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) |
| 3 | 2 | albidv | ⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) |
| 4 | equequ1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 = 𝑦 ↔ 𝑥 = 𝑦 ) ) | |
| 5 | 3 4 | imbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦 ) → 𝑤 = 𝑦 ) ↔ ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 6 | ax-ext | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦 ) → 𝑤 = 𝑦 ) | |
| 7 | 5 6 | chvarvv | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → 𝑥 = 𝑦 ) |