This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of the Axiom of Extensionality with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 14-Aug-2003) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axextnd | |- E. x ( ( x e. y <-> x e. z ) -> y = z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnae | |- F/ x -. A. x x = y |
|
| 2 | nfnae | |- F/ x -. A. x x = z |
|
| 3 | 1 2 | nfan | |- F/ x ( -. A. x x = y /\ -. A. x x = z ) |
| 4 | nfcvf | |- ( -. A. x x = y -> F/_ x y ) |
|
| 5 | 4 | adantr | |- ( ( -. A. x x = y /\ -. A. x x = z ) -> F/_ x y ) |
| 6 | 5 | nfcrd | |- ( ( -. A. x x = y /\ -. A. x x = z ) -> F/ x w e. y ) |
| 7 | nfcvf | |- ( -. A. x x = z -> F/_ x z ) |
|
| 8 | 7 | adantl | |- ( ( -. A. x x = y /\ -. A. x x = z ) -> F/_ x z ) |
| 9 | 8 | nfcrd | |- ( ( -. A. x x = y /\ -. A. x x = z ) -> F/ x w e. z ) |
| 10 | 6 9 | nfbid | |- ( ( -. A. x x = y /\ -. A. x x = z ) -> F/ x ( w e. y <-> w e. z ) ) |
| 11 | elequ1 | |- ( w = x -> ( w e. y <-> x e. y ) ) |
|
| 12 | elequ1 | |- ( w = x -> ( w e. z <-> x e. z ) ) |
|
| 13 | 11 12 | bibi12d | |- ( w = x -> ( ( w e. y <-> w e. z ) <-> ( x e. y <-> x e. z ) ) ) |
| 14 | 13 | a1i | |- ( ( -. A. x x = y /\ -. A. x x = z ) -> ( w = x -> ( ( w e. y <-> w e. z ) <-> ( x e. y <-> x e. z ) ) ) ) |
| 15 | 3 10 14 | cbvald | |- ( ( -. A. x x = y /\ -. A. x x = z ) -> ( A. w ( w e. y <-> w e. z ) <-> A. x ( x e. y <-> x e. z ) ) ) |
| 16 | axextg | |- ( A. w ( w e. y <-> w e. z ) -> y = z ) |
|
| 17 | 15 16 | biimtrrdi | |- ( ( -. A. x x = y /\ -. A. x x = z ) -> ( A. x ( x e. y <-> x e. z ) -> y = z ) ) |
| 18 | 19.8a | |- ( y = z -> E. x y = z ) |
|
| 19 | 17 18 | syl6 | |- ( ( -. A. x x = y /\ -. A. x x = z ) -> ( A. x ( x e. y <-> x e. z ) -> E. x y = z ) ) |
| 20 | 19 | ex | |- ( -. A. x x = y -> ( -. A. x x = z -> ( A. x ( x e. y <-> x e. z ) -> E. x y = z ) ) ) |
| 21 | ax6e | |- E. x x = z |
|
| 22 | ax7 | |- ( x = y -> ( x = z -> y = z ) ) |
|
| 23 | 22 | aleximi | |- ( A. x x = y -> ( E. x x = z -> E. x y = z ) ) |
| 24 | 21 23 | mpi | |- ( A. x x = y -> E. x y = z ) |
| 25 | 24 | a1d | |- ( A. x x = y -> ( A. x ( x e. y <-> x e. z ) -> E. x y = z ) ) |
| 26 | ax6e | |- E. x x = y |
|
| 27 | ax7 | |- ( x = z -> ( x = y -> z = y ) ) |
|
| 28 | equcomi | |- ( z = y -> y = z ) |
|
| 29 | 27 28 | syl6 | |- ( x = z -> ( x = y -> y = z ) ) |
| 30 | 29 | aleximi | |- ( A. x x = z -> ( E. x x = y -> E. x y = z ) ) |
| 31 | 26 30 | mpi | |- ( A. x x = z -> E. x y = z ) |
| 32 | 31 | a1d | |- ( A. x x = z -> ( A. x ( x e. y <-> x e. z ) -> E. x y = z ) ) |
| 33 | 20 25 32 | pm2.61ii | |- ( A. x ( x e. y <-> x e. z ) -> E. x y = z ) |
| 34 | 33 | 19.35ri | |- E. x ( ( x e. y <-> x e. z ) -> y = z ) |