This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equivalence of the definitions of a simple graph, expressed with the set of vertices and the set of edges. (Contributed by AV, 2-Jan-2020) (Revised by AV, 15-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ausgr.1 | ⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 ⊆ { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } } | |
| ausgrusgri.1 | ⊢ 𝑂 = { 𝑓 ∣ 𝑓 : dom 𝑓 –1-1→ ran 𝑓 } | ||
| Assertion | usgrausgrb | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ↔ 𝐻 ∈ USGraph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ausgr.1 | ⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 ⊆ { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } } | |
| 2 | ausgrusgri.1 | ⊢ 𝑂 = { 𝑓 ∣ 𝑓 : dom 𝑓 –1-1→ ran 𝑓 } | |
| 3 | 1 2 | ausgrusgri | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → 𝐻 ∈ USGraph ) |
| 4 | 3 | 3exp | ⊢ ( 𝐻 ∈ 𝑊 → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) → ( ( iEdg ‘ 𝐻 ) ∈ 𝑂 → 𝐻 ∈ USGraph ) ) ) |
| 5 | 4 | com23 | ⊢ ( 𝐻 ∈ 𝑊 → ( ( iEdg ‘ 𝐻 ) ∈ 𝑂 → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) → 𝐻 ∈ USGraph ) ) ) |
| 6 | 5 | imp | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) → 𝐻 ∈ USGraph ) ) |
| 7 | 1 | usgrausgri | ⊢ ( 𝐻 ∈ USGraph → ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ) |
| 8 | 6 7 | impbid1 | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ↔ 𝐻 ∈ USGraph ) ) |