This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple graph represented by an alternatively defined simple graph. (Contributed by AV, 15-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ausgr.1 | ⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 ⊆ { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } } | |
| Assertion | usgrausgri | ⊢ ( 𝐻 ∈ USGraph → ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ausgr.1 | ⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 ⊆ { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } } | |
| 2 | usgredgss | ⊢ ( 𝐻 ∈ USGraph → ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | |
| 3 | fvex | ⊢ ( Vtx ‘ 𝐻 ) ∈ V | |
| 4 | fvex | ⊢ ( Edg ‘ 𝐻 ) ∈ V | |
| 5 | 1 | isausgr | ⊢ ( ( ( Vtx ‘ 𝐻 ) ∈ V ∧ ( Edg ‘ 𝐻 ) ∈ V ) → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ↔ ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 6 | 3 4 5 | mp2an | ⊢ ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ↔ ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 7 | 2 6 | sylibr | ⊢ ( 𝐻 ∈ USGraph → ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ) |