This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an alternatively defined simple graph has the vertices and edges of an arbitrary graph, the arbitrary graph is an undirected multigraph. (Contributed by AV, 18-Oct-2020) (Revised by AV, 25-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ausgr.1 | ⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 ⊆ { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } } | |
| Assertion | ausgrumgri | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ∧ Fun ( iEdg ‘ 𝐻 ) ) → 𝐻 ∈ UMGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ausgr.1 | ⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 ⊆ { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } } | |
| 2 | fvex | ⊢ ( Vtx ‘ 𝐻 ) ∈ V | |
| 3 | fvex | ⊢ ( Edg ‘ 𝐻 ) ∈ V | |
| 4 | 1 | isausgr | ⊢ ( ( ( Vtx ‘ 𝐻 ) ∈ V ∧ ( Edg ‘ 𝐻 ) ∈ V ) → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ↔ ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 5 | 2 3 4 | mp2an | ⊢ ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ↔ ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 6 | edgval | ⊢ ( Edg ‘ 𝐻 ) = ran ( iEdg ‘ 𝐻 ) | |
| 7 | 6 | a1i | ⊢ ( 𝐻 ∈ 𝑊 → ( Edg ‘ 𝐻 ) = ran ( iEdg ‘ 𝐻 ) ) |
| 8 | 7 | sseq1d | ⊢ ( 𝐻 ∈ 𝑊 → ( ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 9 | funfn | ⊢ ( Fun ( iEdg ‘ 𝐻 ) ↔ ( iEdg ‘ 𝐻 ) Fn dom ( iEdg ‘ 𝐻 ) ) | |
| 10 | 9 | biimpi | ⊢ ( Fun ( iEdg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) Fn dom ( iEdg ‘ 𝐻 ) ) |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ Fun ( iEdg ‘ 𝐻 ) ) → ( iEdg ‘ 𝐻 ) Fn dom ( iEdg ‘ 𝐻 ) ) |
| 12 | simp2 | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ Fun ( iEdg ‘ 𝐻 ) ) → ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | |
| 13 | df-f | ⊢ ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( ( iEdg ‘ 𝐻 ) Fn dom ( iEdg ‘ 𝐻 ) ∧ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) | |
| 14 | 11 12 13 | sylanbrc | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ Fun ( iEdg ‘ 𝐻 ) ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 15 | 14 | 3exp | ⊢ ( 𝐻 ∈ 𝑊 → ( ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( Fun ( iEdg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 16 | 8 15 | sylbid | ⊢ ( 𝐻 ∈ 𝑊 → ( ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( Fun ( iEdg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 17 | 5 16 | biimtrid | ⊢ ( 𝐻 ∈ 𝑊 → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) → ( Fun ( iEdg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 18 | 17 | 3imp | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ∧ Fun ( iEdg ‘ 𝐻 ) ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 19 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 20 | eqid | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) | |
| 21 | 19 20 | isumgrs | ⊢ ( 𝐻 ∈ 𝑊 → ( 𝐻 ∈ UMGraph ↔ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ∧ Fun ( iEdg ‘ 𝐻 ) ) → ( 𝐻 ∈ UMGraph ↔ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 23 | 18 22 | mpbird | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ∧ Fun ( iEdg ‘ 𝐻 ) ) → 𝐻 ∈ UMGraph ) |