This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of modular law pmod1i that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012) (Revised by Mario Carneiro, 10-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atmod.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| atmod.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| atmod.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| atmod.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| atmod.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | atmod1i2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ∨ ( 𝑃 ∧ 𝑌 ) ) = ( ( 𝑋 ∨ 𝑃 ) ∧ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atmod.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | atmod.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | atmod.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | atmod.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 5 | atmod.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 6 | simpl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐾 ∈ HL ) | |
| 7 | simpr2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 8 | simpr1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑃 ∈ 𝐴 ) | |
| 9 | eqid | ⊢ ( pmap ‘ 𝐾 ) = ( pmap ‘ 𝐾 ) | |
| 10 | eqid | ⊢ ( +𝑃 ‘ 𝐾 ) = ( +𝑃 ‘ 𝐾 ) | |
| 11 | 1 3 5 9 10 | pmapjat1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( pmap ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ 𝑋 ) ( +𝑃 ‘ 𝐾 ) ( ( pmap ‘ 𝐾 ) ‘ 𝑃 ) ) ) |
| 12 | 6 7 8 11 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ 𝑋 ) ( +𝑃 ‘ 𝐾 ) ( ( pmap ‘ 𝐾 ) ‘ 𝑃 ) ) ) |
| 13 | 1 5 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 14 | 8 13 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑃 ∈ 𝐵 ) |
| 15 | simpr3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 16 | 1 2 3 4 9 10 | hlmod1i | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ ( ( pmap ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ 𝑋 ) ( +𝑃 ‘ 𝐾 ) ( ( pmap ‘ 𝐾 ) ‘ 𝑃 ) ) ) → ( ( 𝑋 ∨ 𝑃 ) ∧ 𝑌 ) = ( 𝑋 ∨ ( 𝑃 ∧ 𝑌 ) ) ) ) |
| 17 | 6 7 14 15 16 | syl13anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ ( ( pmap ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ 𝑋 ) ( +𝑃 ‘ 𝐾 ) ( ( pmap ‘ 𝐾 ) ‘ 𝑃 ) ) ) → ( ( 𝑋 ∨ 𝑃 ) ∧ 𝑌 ) = ( 𝑋 ∨ ( 𝑃 ∧ 𝑌 ) ) ) ) |
| 18 | 12 17 | mpan2d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → ( ( 𝑋 ∨ 𝑃 ) ∧ 𝑌 ) = ( 𝑋 ∨ ( 𝑃 ∧ 𝑌 ) ) ) ) |
| 19 | 18 | 3impia | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( ( 𝑋 ∨ 𝑃 ) ∧ 𝑌 ) = ( 𝑋 ∨ ( 𝑃 ∧ 𝑌 ) ) ) |
| 20 | 19 | eqcomd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ∨ ( 𝑃 ∧ 𝑌 ) ) = ( ( 𝑋 ∨ 𝑃 ) ∧ 𝑌 ) ) |