This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lattice element is nonzero if an atom is under it. (Contributed by NM, 26-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atlen0.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| atlen0.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| atlen0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| atlen0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | atlen0 | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑃 ≤ 𝑋 ) → 𝑋 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlen0.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | atlen0.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | atlen0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 4 | atlen0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 5 | simpl1 | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑃 ≤ 𝑋 ) → 𝐾 ∈ AtLat ) | |
| 6 | 1 3 | atl0cl | ⊢ ( 𝐾 ∈ AtLat → 0 ∈ 𝐵 ) |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑃 ≤ 𝑋 ) → 0 ∈ 𝐵 ) |
| 8 | simpl2 | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑃 ≤ 𝑋 ) → 𝑋 ∈ 𝐵 ) | |
| 9 | 5 7 8 | 3jca | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 10 | simpl3 | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑃 ≤ 𝑋 ) → 𝑃 ∈ 𝐴 ) | |
| 11 | 1 4 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 12 | 10 11 | syl | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑃 ≤ 𝑋 ) → 𝑃 ∈ 𝐵 ) |
| 13 | eqid | ⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) | |
| 14 | 3 13 4 | atcvr0 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) |
| 15 | 5 10 14 | syl2anc | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑃 ≤ 𝑋 ) → 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) |
| 16 | eqid | ⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) | |
| 17 | 1 16 13 | cvrlt | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) ∧ 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) → 0 ( lt ‘ 𝐾 ) 𝑃 ) |
| 18 | 5 7 12 15 17 | syl31anc | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑃 ≤ 𝑋 ) → 0 ( lt ‘ 𝐾 ) 𝑃 ) |
| 19 | simpr | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑃 ≤ 𝑋 ) → 𝑃 ≤ 𝑋 ) | |
| 20 | atlpos | ⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Poset ) | |
| 21 | 5 20 | syl | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑃 ≤ 𝑋 ) → 𝐾 ∈ Poset ) |
| 22 | 1 2 16 | pltletr | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 0 ( lt ‘ 𝐾 ) 𝑃 ∧ 𝑃 ≤ 𝑋 ) → 0 ( lt ‘ 𝐾 ) 𝑋 ) ) |
| 23 | 21 7 12 8 22 | syl13anc | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑃 ≤ 𝑋 ) → ( ( 0 ( lt ‘ 𝐾 ) 𝑃 ∧ 𝑃 ≤ 𝑋 ) → 0 ( lt ‘ 𝐾 ) 𝑋 ) ) |
| 24 | 18 19 23 | mp2and | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑃 ≤ 𝑋 ) → 0 ( lt ‘ 𝐾 ) 𝑋 ) |
| 25 | 16 | pltne | ⊢ ( ( 𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( lt ‘ 𝐾 ) 𝑋 → 0 ≠ 𝑋 ) ) |
| 26 | 9 24 25 | sylc | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑃 ≤ 𝑋 ) → 0 ≠ 𝑋 ) |
| 27 | 26 | necomd | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑃 ≤ 𝑋 ) → 𝑋 ≠ 0 ) |