This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law for chained "less than" and "less than or equal to". ( psssstr analog.) (Contributed by NM, 2-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pltletr.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pltletr.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| pltletr.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| Assertion | pltletr | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 < 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltletr.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pltletr.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | pltletr.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 4 | 1 2 3 | pleval2 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ≤ 𝑍 ↔ ( 𝑌 < 𝑍 ∨ 𝑌 = 𝑍 ) ) ) |
| 5 | 4 | 3adant3r1 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 ≤ 𝑍 ↔ ( 𝑌 < 𝑍 ∨ 𝑌 = 𝑍 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 ≤ 𝑍 ↔ ( 𝑌 < 𝑍 ∨ 𝑌 = 𝑍 ) ) ) |
| 7 | 1 3 | plttr | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑍 ) → 𝑋 < 𝑍 ) ) |
| 8 | 7 | expdimp | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 < 𝑍 → 𝑋 < 𝑍 ) ) |
| 9 | breq2 | ⊢ ( 𝑌 = 𝑍 → ( 𝑋 < 𝑌 ↔ 𝑋 < 𝑍 ) ) | |
| 10 | 9 | biimpcd | ⊢ ( 𝑋 < 𝑌 → ( 𝑌 = 𝑍 → 𝑋 < 𝑍 ) ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 = 𝑍 → 𝑋 < 𝑍 ) ) |
| 12 | 8 11 | jaod | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 < 𝑌 ) → ( ( 𝑌 < 𝑍 ∨ 𝑌 = 𝑍 ) → 𝑋 < 𝑍 ) ) |
| 13 | 6 12 | sylbid | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 ≤ 𝑍 → 𝑋 < 𝑍 ) ) |
| 14 | 13 | expimpd | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 < 𝑍 ) ) |