This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lattice element is nonzero if an atom is under it. (Contributed by NM, 26-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atlen0.b | |- B = ( Base ` K ) |
|
| atlen0.l | |- .<_ = ( le ` K ) |
||
| atlen0.z | |- .0. = ( 0. ` K ) |
||
| atlen0.a | |- A = ( Atoms ` K ) |
||
| Assertion | atlen0 | |- ( ( ( K e. AtLat /\ X e. B /\ P e. A ) /\ P .<_ X ) -> X =/= .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlen0.b | |- B = ( Base ` K ) |
|
| 2 | atlen0.l | |- .<_ = ( le ` K ) |
|
| 3 | atlen0.z | |- .0. = ( 0. ` K ) |
|
| 4 | atlen0.a | |- A = ( Atoms ` K ) |
|
| 5 | simpl1 | |- ( ( ( K e. AtLat /\ X e. B /\ P e. A ) /\ P .<_ X ) -> K e. AtLat ) |
|
| 6 | 1 3 | atl0cl | |- ( K e. AtLat -> .0. e. B ) |
| 7 | 5 6 | syl | |- ( ( ( K e. AtLat /\ X e. B /\ P e. A ) /\ P .<_ X ) -> .0. e. B ) |
| 8 | simpl2 | |- ( ( ( K e. AtLat /\ X e. B /\ P e. A ) /\ P .<_ X ) -> X e. B ) |
|
| 9 | 5 7 8 | 3jca | |- ( ( ( K e. AtLat /\ X e. B /\ P e. A ) /\ P .<_ X ) -> ( K e. AtLat /\ .0. e. B /\ X e. B ) ) |
| 10 | simpl3 | |- ( ( ( K e. AtLat /\ X e. B /\ P e. A ) /\ P .<_ X ) -> P e. A ) |
|
| 11 | 1 4 | atbase | |- ( P e. A -> P e. B ) |
| 12 | 10 11 | syl | |- ( ( ( K e. AtLat /\ X e. B /\ P e. A ) /\ P .<_ X ) -> P e. B ) |
| 13 | eqid | |- ( |
|
| 14 | 3 13 4 | atcvr0 | |- ( ( K e. AtLat /\ P e. A ) -> .0. ( |
| 15 | 5 10 14 | syl2anc | |- ( ( ( K e. AtLat /\ X e. B /\ P e. A ) /\ P .<_ X ) -> .0. ( |
| 16 | eqid | |- ( lt ` K ) = ( lt ` K ) |
|
| 17 | 1 16 13 | cvrlt | |- ( ( ( K e. AtLat /\ .0. e. B /\ P e. B ) /\ .0. ( |
| 18 | 5 7 12 15 17 | syl31anc | |- ( ( ( K e. AtLat /\ X e. B /\ P e. A ) /\ P .<_ X ) -> .0. ( lt ` K ) P ) |
| 19 | simpr | |- ( ( ( K e. AtLat /\ X e. B /\ P e. A ) /\ P .<_ X ) -> P .<_ X ) |
|
| 20 | atlpos | |- ( K e. AtLat -> K e. Poset ) |
|
| 21 | 5 20 | syl | |- ( ( ( K e. AtLat /\ X e. B /\ P e. A ) /\ P .<_ X ) -> K e. Poset ) |
| 22 | 1 2 16 | pltletr | |- ( ( K e. Poset /\ ( .0. e. B /\ P e. B /\ X e. B ) ) -> ( ( .0. ( lt ` K ) P /\ P .<_ X ) -> .0. ( lt ` K ) X ) ) |
| 23 | 21 7 12 8 22 | syl13anc | |- ( ( ( K e. AtLat /\ X e. B /\ P e. A ) /\ P .<_ X ) -> ( ( .0. ( lt ` K ) P /\ P .<_ X ) -> .0. ( lt ` K ) X ) ) |
| 24 | 18 19 23 | mp2and | |- ( ( ( K e. AtLat /\ X e. B /\ P e. A ) /\ P .<_ X ) -> .0. ( lt ` K ) X ) |
| 25 | 16 | pltne | |- ( ( K e. AtLat /\ .0. e. B /\ X e. B ) -> ( .0. ( lt ` K ) X -> .0. =/= X ) ) |
| 26 | 9 24 25 | sylc | |- ( ( ( K e. AtLat /\ X e. B /\ P e. A ) /\ P .<_ X ) -> .0. =/= X ) |
| 27 | 26 | necomd | |- ( ( ( K e. AtLat /\ X e. B /\ P e. A ) /\ P .<_ X ) -> X =/= .0. ) |