This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hilbert lattice satisfies the atom exchange property. Proposition 1(i) of Kalmbach p. 140. A version of this theorem related to vector analysis was originally proved by Hermann Grassmann in 1862. Also Definition 3.4-3(b) in MegPav2000 p. 2345 (PDF p. 8) (use atnemeq0 to obtain atom inequality). (Contributed by NM, 27-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atexch | |- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> C C_ ( A vH B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atelch | |- ( C e. HAtoms -> C e. CH ) |
|
| 2 | chub2 | |- ( ( C e. CH /\ A e. CH ) -> C C_ ( A vH C ) ) |
|
| 3 | 2 | ancoms | |- ( ( A e. CH /\ C e. CH ) -> C C_ ( A vH C ) ) |
| 4 | 1 3 | sylan2 | |- ( ( A e. CH /\ C e. HAtoms ) -> C C_ ( A vH C ) ) |
| 5 | 4 | 3adant2 | |- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> C C_ ( A vH C ) ) |
| 6 | 5 | adantr | |- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) ) -> C C_ ( A vH C ) ) |
| 7 | cvp | |- ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H <-> A |
|
| 8 | atelch | |- ( B e. HAtoms -> B e. CH ) |
|
| 9 | chjcl | |- ( ( A e. CH /\ B e. CH ) -> ( A vH B ) e. CH ) |
|
| 10 | 8 9 | sylan2 | |- ( ( A e. CH /\ B e. HAtoms ) -> ( A vH B ) e. CH ) |
| 11 | cvpss | |- ( ( A e. CH /\ ( A vH B ) e. CH ) -> ( A |
|
| 12 | 10 11 | syldan | |- ( ( A e. CH /\ B e. HAtoms ) -> ( A |
| 13 | 7 12 | sylbid | |- ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H -> A C. ( A vH B ) ) ) |
| 14 | 13 | 3adant3 | |- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( A i^i B ) = 0H -> A C. ( A vH B ) ) ) |
| 15 | 14 | adantld | |- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> A C. ( A vH B ) ) ) |
| 16 | id | |- ( A e. CH -> A e. CH ) |
|
| 17 | chub1 | |- ( ( A e. CH /\ C e. CH ) -> A C_ ( A vH C ) ) |
|
| 18 | 17 | 3adant2 | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> A C_ ( A vH C ) ) |
| 19 | 18 | a1d | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( B C_ ( A vH C ) -> A C_ ( A vH C ) ) ) |
| 20 | 19 | ancrd | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( B C_ ( A vH C ) -> ( A C_ ( A vH C ) /\ B C_ ( A vH C ) ) ) ) |
| 21 | chjcl | |- ( ( A e. CH /\ C e. CH ) -> ( A vH C ) e. CH ) |
|
| 22 | 21 | 3adant2 | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A vH C ) e. CH ) |
| 23 | chlub | |- ( ( A e. CH /\ B e. CH /\ ( A vH C ) e. CH ) -> ( ( A C_ ( A vH C ) /\ B C_ ( A vH C ) ) <-> ( A vH B ) C_ ( A vH C ) ) ) |
|
| 24 | 22 23 | syld3an3 | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A C_ ( A vH C ) /\ B C_ ( A vH C ) ) <-> ( A vH B ) C_ ( A vH C ) ) ) |
| 25 | 20 24 | sylibd | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( B C_ ( A vH C ) -> ( A vH B ) C_ ( A vH C ) ) ) |
| 26 | 16 8 1 25 | syl3an | |- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( B C_ ( A vH C ) -> ( A vH B ) C_ ( A vH C ) ) ) |
| 27 | 26 | adantrd | |- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> ( A vH B ) C_ ( A vH C ) ) ) |
| 28 | 15 27 | jcad | |- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) ) ) |
| 29 | 28 | imp | |- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) ) -> ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) ) |
| 30 | simp1 | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> A e. CH ) |
|
| 31 | 9 | 3adant3 | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A vH B ) e. CH ) |
| 32 | 30 22 31 | 3jca | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A e. CH /\ ( A vH C ) e. CH /\ ( A vH B ) e. CH ) ) |
| 33 | 16 8 1 32 | syl3an | |- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( A e. CH /\ ( A vH C ) e. CH /\ ( A vH B ) e. CH ) ) |
| 34 | 14 26 | anim12d | |- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( ( A i^i B ) = 0H /\ B C_ ( A vH C ) ) -> ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) ) ) |
| 35 | 34 | ancomsd | |- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) ) ) |
| 36 | psssstr | |- ( ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) -> A C. ( A vH C ) ) |
|
| 37 | 35 36 | syl6 | |- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> A C. ( A vH C ) ) ) |
| 38 | chcv2 | |- ( ( A e. CH /\ C e. HAtoms ) -> ( A C. ( A vH C ) <-> A |
|
| 39 | 38 | 3adant2 | |- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( A C. ( A vH C ) <-> A |
| 40 | 37 39 | sylibd | |- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> A |
| 41 | cvnbtwn2 | |- ( ( A e. CH /\ ( A vH C ) e. CH /\ ( A vH B ) e. CH ) -> ( A |
|
| 42 | 33 40 41 | sylsyld | |- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> ( ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) -> ( A vH B ) = ( A vH C ) ) ) ) |
| 43 | 42 | imp | |- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) ) -> ( ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) -> ( A vH B ) = ( A vH C ) ) ) |
| 44 | 29 43 | mpd | |- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) ) -> ( A vH B ) = ( A vH C ) ) |
| 45 | 6 44 | sseqtrrd | |- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) ) -> C C_ ( A vH B ) ) |
| 46 | 45 | ex | |- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> C C_ ( A vH B ) ) ) |