This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left- and right-associative property of an associative algebra. Notice that the scalars are commuted! (Contributed by AV, 14-Aug-2019) (Proof shortened by Zhi Wang, 11-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | assa2ass.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| assa2ass.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| assa2ass.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| assa2ass.m | ⊢ ∗ = ( .r ‘ 𝐹 ) | ||
| assa2ass.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| assa2ass.t | ⊢ × = ( .r ‘ 𝑊 ) | ||
| Assertion | assa2ass | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝑋 ) × ( 𝐶 · 𝑌 ) ) = ( ( 𝐶 ∗ 𝐴 ) · ( 𝑋 × 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assa2ass.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | assa2ass.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | assa2ass.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 4 | assa2ass.m | ⊢ ∗ = ( .r ‘ 𝐹 ) | |
| 5 | assa2ass.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | assa2ass.t | ⊢ × = ( .r ‘ 𝑊 ) | |
| 7 | simp1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑊 ∈ AssAlg ) | |
| 8 | simpr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ 𝐵 ) | |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝐶 ∈ 𝐵 ) |
| 10 | assalmod | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) | |
| 11 | simpl | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) | |
| 12 | simpl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 13 | 1 2 5 3 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 14 | 10 11 12 13 | syl3an | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 15 | simpr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ 𝑉 ) | |
| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑌 ∈ 𝑉 ) |
| 17 | 1 2 3 5 6 | assaassr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐶 ∈ 𝐵 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝑋 ) × ( 𝐶 · 𝑌 ) ) = ( 𝐶 · ( ( 𝐴 · 𝑋 ) × 𝑌 ) ) ) |
| 18 | 7 9 14 16 17 | syl13anc | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝑋 ) × ( 𝐶 · 𝑌 ) ) = ( 𝐶 · ( ( 𝐴 · 𝑋 ) × 𝑌 ) ) ) |
| 19 | 1 2 3 5 6 | assaass | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐶 ∈ 𝐵 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐶 · ( 𝐴 · 𝑋 ) ) × 𝑌 ) = ( 𝐶 · ( ( 𝐴 · 𝑋 ) × 𝑌 ) ) ) |
| 20 | 19 | eqcomd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐶 ∈ 𝐵 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐶 · ( ( 𝐴 · 𝑋 ) × 𝑌 ) ) = ( ( 𝐶 · ( 𝐴 · 𝑋 ) ) × 𝑌 ) ) |
| 21 | 7 9 14 16 20 | syl13anc | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐶 · ( ( 𝐴 · 𝑋 ) × 𝑌 ) ) = ( ( 𝐶 · ( 𝐴 · 𝑋 ) ) × 𝑌 ) ) |
| 22 | 10 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑊 ∈ LMod ) |
| 23 | 11 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝐴 ∈ 𝐵 ) |
| 24 | 12 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑋 ∈ 𝑉 ) |
| 25 | 1 2 5 3 4 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝐶 ∗ 𝐴 ) · 𝑋 ) = ( 𝐶 · ( 𝐴 · 𝑋 ) ) ) |
| 26 | 25 | eqcomd | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝐶 · ( 𝐴 · 𝑋 ) ) = ( ( 𝐶 ∗ 𝐴 ) · 𝑋 ) ) |
| 27 | 26 | oveq1d | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝐶 · ( 𝐴 · 𝑋 ) ) × 𝑌 ) = ( ( ( 𝐶 ∗ 𝐴 ) · 𝑋 ) × 𝑌 ) ) |
| 28 | 22 9 23 24 27 | syl13anc | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐶 · ( 𝐴 · 𝑋 ) ) × 𝑌 ) = ( ( ( 𝐶 ∗ 𝐴 ) · 𝑋 ) × 𝑌 ) ) |
| 29 | 2 | assasca | ⊢ ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring ) |
| 30 | 29 | adantr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → 𝐹 ∈ Ring ) |
| 31 | 8 | adantl | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → 𝐶 ∈ 𝐵 ) |
| 32 | 11 | adantl | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → 𝐴 ∈ 𝐵 ) |
| 33 | 3 4 30 31 32 | ringcld | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝐶 ∗ 𝐴 ) ∈ 𝐵 ) |
| 34 | 33 | 3adant3 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐶 ∗ 𝐴 ) ∈ 𝐵 ) |
| 35 | 1 2 3 5 6 | assaass | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( ( 𝐶 ∗ 𝐴 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝐶 ∗ 𝐴 ) · 𝑋 ) × 𝑌 ) = ( ( 𝐶 ∗ 𝐴 ) · ( 𝑋 × 𝑌 ) ) ) |
| 36 | 7 34 24 16 35 | syl13anc | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝐶 ∗ 𝐴 ) · 𝑋 ) × 𝑌 ) = ( ( 𝐶 ∗ 𝐴 ) · ( 𝑋 × 𝑌 ) ) ) |
| 37 | 28 36 | eqtrd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐶 · ( 𝐴 · 𝑋 ) ) × 𝑌 ) = ( ( 𝐶 ∗ 𝐴 ) · ( 𝑋 × 𝑌 ) ) ) |
| 38 | 18 21 37 | 3eqtrd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝑋 ) × ( 𝐶 · 𝑌 ) ) = ( ( 𝐶 ∗ 𝐴 ) · ( 𝑋 × 𝑌 ) ) ) |