This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left- and right-associative property of an associative algebra. Notice that the scalars are not commuted! (Contributed by Zhi Wang, 11-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | assa2ass.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| assa2ass.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| assa2ass.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| assa2ass.m | ⊢ ∗ = ( .r ‘ 𝐹 ) | ||
| assa2ass.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| assa2ass.t | ⊢ × = ( .r ‘ 𝑊 ) | ||
| Assertion | assa2ass2 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝑋 ) × ( 𝐶 · 𝑌 ) ) = ( ( 𝐴 ∗ 𝐶 ) · ( 𝑋 × 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assa2ass.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | assa2ass.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | assa2ass.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 4 | assa2ass.m | ⊢ ∗ = ( .r ‘ 𝐹 ) | |
| 5 | assa2ass.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | assa2ass.t | ⊢ × = ( .r ‘ 𝑊 ) | |
| 7 | simp1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑊 ∈ AssAlg ) | |
| 8 | simpl | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) | |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝐴 ∈ 𝐵 ) |
| 10 | simpl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑋 ∈ 𝑉 ) |
| 12 | assalmod | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) | |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑊 ∈ LMod ) |
| 14 | simpr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ 𝐵 ) | |
| 15 | 14 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝐶 ∈ 𝐵 ) |
| 16 | simpr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ 𝑉 ) | |
| 17 | 16 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑌 ∈ 𝑉 ) |
| 18 | 1 2 5 3 13 15 17 | lmodvscld | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐶 · 𝑌 ) ∈ 𝑉 ) |
| 19 | 1 2 3 5 6 | assaass | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ ( 𝐶 · 𝑌 ) ∈ 𝑉 ) ) → ( ( 𝐴 · 𝑋 ) × ( 𝐶 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × ( 𝐶 · 𝑌 ) ) ) ) |
| 20 | 7 9 11 18 19 | syl13anc | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝑋 ) × ( 𝐶 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × ( 𝐶 · 𝑌 ) ) ) ) |
| 21 | 1 2 3 5 6 | assaassr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ ( 𝐶 · 𝑌 ) ∈ 𝑉 ) ) → ( 𝑋 × ( 𝐴 · ( 𝐶 · 𝑌 ) ) ) = ( 𝐴 · ( 𝑋 × ( 𝐶 · 𝑌 ) ) ) ) |
| 22 | 21 | eqcomd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ ( 𝐶 · 𝑌 ) ∈ 𝑉 ) ) → ( 𝐴 · ( 𝑋 × ( 𝐶 · 𝑌 ) ) ) = ( 𝑋 × ( 𝐴 · ( 𝐶 · 𝑌 ) ) ) ) |
| 23 | 7 9 11 18 22 | syl13anc | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐴 · ( 𝑋 × ( 𝐶 · 𝑌 ) ) ) = ( 𝑋 × ( 𝐴 · ( 𝐶 · 𝑌 ) ) ) ) |
| 24 | 1 2 5 3 4 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 ∗ 𝐶 ) · 𝑌 ) = ( 𝐴 · ( 𝐶 · 𝑌 ) ) ) |
| 25 | 24 | eqcomd | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐴 · ( 𝐶 · 𝑌 ) ) = ( ( 𝐴 ∗ 𝐶 ) · 𝑌 ) ) |
| 26 | 25 | oveq2d | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑋 × ( 𝐴 · ( 𝐶 · 𝑌 ) ) ) = ( 𝑋 × ( ( 𝐴 ∗ 𝐶 ) · 𝑌 ) ) ) |
| 27 | 13 9 15 17 26 | syl13anc | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑋 × ( 𝐴 · ( 𝐶 · 𝑌 ) ) ) = ( 𝑋 × ( ( 𝐴 ∗ 𝐶 ) · 𝑌 ) ) ) |
| 28 | 2 | assasca | ⊢ ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring ) |
| 29 | 28 | adantr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → 𝐹 ∈ Ring ) |
| 30 | 8 | adantl | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → 𝐴 ∈ 𝐵 ) |
| 31 | 14 | adantl | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → 𝐶 ∈ 𝐵 ) |
| 32 | 3 4 29 30 31 | ringcld | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝐴 ∗ 𝐶 ) ∈ 𝐵 ) |
| 33 | 32 | 3adant3 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐴 ∗ 𝐶 ) ∈ 𝐵 ) |
| 34 | 1 2 3 5 6 | assaassr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( ( 𝐴 ∗ 𝐶 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑋 × ( ( 𝐴 ∗ 𝐶 ) · 𝑌 ) ) = ( ( 𝐴 ∗ 𝐶 ) · ( 𝑋 × 𝑌 ) ) ) |
| 35 | 7 33 11 17 34 | syl13anc | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑋 × ( ( 𝐴 ∗ 𝐶 ) · 𝑌 ) ) = ( ( 𝐴 ∗ 𝐶 ) · ( 𝑋 × 𝑌 ) ) ) |
| 36 | 27 35 | eqtrd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑋 × ( 𝐴 · ( 𝐶 · 𝑌 ) ) ) = ( ( 𝐴 ∗ 𝐶 ) · ( 𝑋 × 𝑌 ) ) ) |
| 37 | 20 23 36 | 3eqtrd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝑋 ) × ( 𝐶 · 𝑌 ) ) = ( ( 𝐴 ∗ 𝐶 ) · ( 𝑋 × 𝑌 ) ) ) |