This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The algebra scalar lifting function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclf.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| asclf.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| asclf.r | ⊢ ( 𝜑 → 𝑊 ∈ Ring ) | ||
| asclf.l | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| Assertion | asclghm | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐹 GrpHom 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclf.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 2 | asclf.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | asclf.r | ⊢ ( 𝜑 → 𝑊 ∈ Ring ) | |
| 4 | asclf.l | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 7 | eqid | ⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) | |
| 8 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 9 | 2 | lmodring | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
| 11 | ringgrp | ⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
| 13 | ringgrp | ⊢ ( 𝑊 ∈ Ring → 𝑊 ∈ Grp ) | |
| 14 | 3 13 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 15 | 1 2 3 4 5 6 | asclf | ⊢ ( 𝜑 → 𝐴 : ( Base ‘ 𝐹 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 16 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → 𝑊 ∈ LMod ) |
| 17 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐹 ) ) | |
| 18 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐹 ) ) | |
| 19 | eqid | ⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) | |
| 20 | 6 19 | ringidcl | ⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 21 | 3 20 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 23 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 24 | 6 8 2 23 5 7 | lmodvsdir | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( +g ‘ 𝑊 ) ( 𝑦 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 25 | 16 17 18 22 24 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( +g ‘ 𝑊 ) ( 𝑦 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 26 | 5 7 | grpcl | ⊢ ( ( 𝐹 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) → ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
| 27 | 26 | 3expb | ⊢ ( ( 𝐹 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
| 28 | 12 27 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
| 29 | 1 2 5 23 19 | asclval | ⊢ ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ∈ ( Base ‘ 𝐹 ) → ( 𝐴 ‘ ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 30 | 28 29 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝐴 ‘ ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 31 | 1 2 5 23 19 | asclval | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐹 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 32 | 1 2 5 23 19 | asclval | ⊢ ( 𝑦 ∈ ( Base ‘ 𝐹 ) → ( 𝐴 ‘ 𝑦 ) = ( 𝑦 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 33 | 31 32 | oveqan12d | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝐴 ‘ 𝑥 ) ( +g ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( +g ‘ 𝑊 ) ( 𝑦 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 34 | 33 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( ( 𝐴 ‘ 𝑥 ) ( +g ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( +g ‘ 𝑊 ) ( 𝑦 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 35 | 25 30 34 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝐴 ‘ ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) ( +g ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) ) |
| 36 | 5 6 7 8 12 14 15 35 | isghmd | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐹 GrpHom 𝑊 ) ) |