This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction associated with mulgcl . (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgcld.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgcld.2 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgcld.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| mulgcld.4 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| mulgcld.5 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | mulgcld | ⊢ ( 𝜑 → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgcld.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgcld.2 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgcld.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 4 | mulgcld.4 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 5 | mulgcld.5 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 7 | 3 4 5 6 | syl3anc | ⊢ ( 𝜑 → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |