This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The algebra scalar lifting function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclf.a | |- A = ( algSc ` W ) |
|
| asclf.f | |- F = ( Scalar ` W ) |
||
| asclf.r | |- ( ph -> W e. Ring ) |
||
| asclf.l | |- ( ph -> W e. LMod ) |
||
| Assertion | asclghm | |- ( ph -> A e. ( F GrpHom W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclf.a | |- A = ( algSc ` W ) |
|
| 2 | asclf.f | |- F = ( Scalar ` W ) |
|
| 3 | asclf.r | |- ( ph -> W e. Ring ) |
|
| 4 | asclf.l | |- ( ph -> W e. LMod ) |
|
| 5 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 6 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 7 | eqid | |- ( +g ` F ) = ( +g ` F ) |
|
| 8 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 9 | 2 | lmodring | |- ( W e. LMod -> F e. Ring ) |
| 10 | 4 9 | syl | |- ( ph -> F e. Ring ) |
| 11 | ringgrp | |- ( F e. Ring -> F e. Grp ) |
|
| 12 | 10 11 | syl | |- ( ph -> F e. Grp ) |
| 13 | ringgrp | |- ( W e. Ring -> W e. Grp ) |
|
| 14 | 3 13 | syl | |- ( ph -> W e. Grp ) |
| 15 | 1 2 3 4 5 6 | asclf | |- ( ph -> A : ( Base ` F ) --> ( Base ` W ) ) |
| 16 | 4 | adantr | |- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> W e. LMod ) |
| 17 | simprl | |- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> x e. ( Base ` F ) ) |
|
| 18 | simprr | |- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> y e. ( Base ` F ) ) |
|
| 19 | eqid | |- ( 1r ` W ) = ( 1r ` W ) |
|
| 20 | 6 19 | ringidcl | |- ( W e. Ring -> ( 1r ` W ) e. ( Base ` W ) ) |
| 21 | 3 20 | syl | |- ( ph -> ( 1r ` W ) e. ( Base ` W ) ) |
| 22 | 21 | adantr | |- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( 1r ` W ) e. ( Base ` W ) ) |
| 23 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 24 | 6 8 2 23 5 7 | lmodvsdir | |- ( ( W e. LMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) /\ ( 1r ` W ) e. ( Base ` W ) ) ) -> ( ( x ( +g ` F ) y ) ( .s ` W ) ( 1r ` W ) ) = ( ( x ( .s ` W ) ( 1r ` W ) ) ( +g ` W ) ( y ( .s ` W ) ( 1r ` W ) ) ) ) |
| 25 | 16 17 18 22 24 | syl13anc | |- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( ( x ( +g ` F ) y ) ( .s ` W ) ( 1r ` W ) ) = ( ( x ( .s ` W ) ( 1r ` W ) ) ( +g ` W ) ( y ( .s ` W ) ( 1r ` W ) ) ) ) |
| 26 | 5 7 | grpcl | |- ( ( F e. Grp /\ x e. ( Base ` F ) /\ y e. ( Base ` F ) ) -> ( x ( +g ` F ) y ) e. ( Base ` F ) ) |
| 27 | 26 | 3expb | |- ( ( F e. Grp /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( x ( +g ` F ) y ) e. ( Base ` F ) ) |
| 28 | 12 27 | sylan | |- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( x ( +g ` F ) y ) e. ( Base ` F ) ) |
| 29 | 1 2 5 23 19 | asclval | |- ( ( x ( +g ` F ) y ) e. ( Base ` F ) -> ( A ` ( x ( +g ` F ) y ) ) = ( ( x ( +g ` F ) y ) ( .s ` W ) ( 1r ` W ) ) ) |
| 30 | 28 29 | syl | |- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( A ` ( x ( +g ` F ) y ) ) = ( ( x ( +g ` F ) y ) ( .s ` W ) ( 1r ` W ) ) ) |
| 31 | 1 2 5 23 19 | asclval | |- ( x e. ( Base ` F ) -> ( A ` x ) = ( x ( .s ` W ) ( 1r ` W ) ) ) |
| 32 | 1 2 5 23 19 | asclval | |- ( y e. ( Base ` F ) -> ( A ` y ) = ( y ( .s ` W ) ( 1r ` W ) ) ) |
| 33 | 31 32 | oveqan12d | |- ( ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) -> ( ( A ` x ) ( +g ` W ) ( A ` y ) ) = ( ( x ( .s ` W ) ( 1r ` W ) ) ( +g ` W ) ( y ( .s ` W ) ( 1r ` W ) ) ) ) |
| 34 | 33 | adantl | |- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( ( A ` x ) ( +g ` W ) ( A ` y ) ) = ( ( x ( .s ` W ) ( 1r ` W ) ) ( +g ` W ) ( y ( .s ` W ) ( 1r ` W ) ) ) ) |
| 35 | 25 30 34 | 3eqtr4d | |- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( A ` ( x ( +g ` F ) y ) ) = ( ( A ` x ) ( +g ` W ) ( A ` y ) ) ) |
| 36 | 5 6 7 8 12 14 15 35 | isghmd | |- ( ph -> A e. ( F GrpHom W ) ) |