This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac11 . Perform variable substitutions. This is the most we can say without invoking regularity. (Contributed by Stefan O'Rear, 20-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aomclem8.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| aomclem8.y | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) | ||
| Assertion | aomclem8 | ⊢ ( 𝜑 → ∃ 𝑏 𝑏 We ( 𝑅1 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aomclem8.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 2 | aomclem8.y | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) | |
| 3 | elequ2 | ⊢ ( ℎ = 𝑏 → ( 𝑖 ∈ ℎ ↔ 𝑖 ∈ 𝑏 ) ) | |
| 4 | elequ2 | ⊢ ( 𝑔 = 𝑐 → ( 𝑖 ∈ 𝑔 ↔ 𝑖 ∈ 𝑐 ) ) | |
| 5 | 4 | notbid | ⊢ ( 𝑔 = 𝑐 → ( ¬ 𝑖 ∈ 𝑔 ↔ ¬ 𝑖 ∈ 𝑐 ) ) |
| 6 | 3 5 | bi2anan9r | ⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ↔ ( 𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐 ) ) ) |
| 7 | elequ2 | ⊢ ( 𝑔 = 𝑐 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ 𝑐 ) ) | |
| 8 | elequ2 | ⊢ ( ℎ = 𝑏 → ( 𝑗 ∈ ℎ ↔ 𝑗 ∈ 𝑏 ) ) | |
| 9 | 7 8 | bi2bian9 | ⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ↔ ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ↔ ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) ) |
| 11 | 10 | ralbidv | ⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ↔ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) ) |
| 12 | 6 11 | anbi12d | ⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ↔ ( ( 𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) ) ) |
| 13 | 12 | rexbidv | ⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ↔ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) ) ) |
| 14 | elequ1 | ⊢ ( 𝑖 = 𝑑 → ( 𝑖 ∈ 𝑏 ↔ 𝑑 ∈ 𝑏 ) ) | |
| 15 | elequ1 | ⊢ ( 𝑖 = 𝑑 → ( 𝑖 ∈ 𝑐 ↔ 𝑑 ∈ 𝑐 ) ) | |
| 16 | 15 | notbid | ⊢ ( 𝑖 = 𝑑 → ( ¬ 𝑖 ∈ 𝑐 ↔ ¬ 𝑑 ∈ 𝑐 ) ) |
| 17 | 14 16 | anbi12d | ⊢ ( 𝑖 = 𝑑 → ( ( 𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐 ) ↔ ( 𝑑 ∈ 𝑏 ∧ ¬ 𝑑 ∈ 𝑐 ) ) ) |
| 18 | breq2 | ⊢ ( 𝑖 = 𝑑 → ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 ↔ 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 ) ) | |
| 19 | 18 | imbi1d | ⊢ ( 𝑖 = 𝑑 → ( ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ↔ ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) ) |
| 20 | 19 | ralbidv | ⊢ ( 𝑖 = 𝑑 → ( ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ↔ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) ) |
| 21 | breq1 | ⊢ ( 𝑗 = 𝑓 → ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 ↔ 𝑓 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 ) ) | |
| 22 | elequ1 | ⊢ ( 𝑗 = 𝑓 → ( 𝑗 ∈ 𝑐 ↔ 𝑓 ∈ 𝑐 ) ) | |
| 23 | elequ1 | ⊢ ( 𝑗 = 𝑓 → ( 𝑗 ∈ 𝑏 ↔ 𝑓 ∈ 𝑏 ) ) | |
| 24 | 22 23 | bibi12d | ⊢ ( 𝑗 = 𝑓 → ( ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ↔ ( 𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏 ) ) ) |
| 25 | 21 24 | imbi12d | ⊢ ( 𝑗 = 𝑓 → ( ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ↔ ( 𝑓 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏 ) ) ) ) |
| 26 | 25 | cbvralvw | ⊢ ( ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ↔ ∀ 𝑓 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏 ) ) ) |
| 27 | 20 26 | bitrdi | ⊢ ( 𝑖 = 𝑑 → ( ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ↔ ∀ 𝑓 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏 ) ) ) ) |
| 28 | 17 27 | anbi12d | ⊢ ( 𝑖 = 𝑑 → ( ( ( 𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) ↔ ( ( 𝑑 ∈ 𝑏 ∧ ¬ 𝑑 ∈ 𝑐 ) ∧ ∀ 𝑓 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏 ) ) ) ) ) |
| 29 | 28 | cbvrexvw | ⊢ ( ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) ↔ ∃ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑑 ∈ 𝑏 ∧ ¬ 𝑑 ∈ 𝑐 ) ∧ ∀ 𝑓 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏 ) ) ) ) |
| 30 | 13 29 | bitrdi | ⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ↔ ∃ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑑 ∈ 𝑏 ∧ ¬ 𝑑 ∈ 𝑐 ) ∧ ∀ 𝑓 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏 ) ) ) ) ) |
| 31 | 30 | cbvopabv | ⊢ { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } = { 〈 𝑐 , 𝑏 〉 ∣ ∃ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑑 ∈ 𝑏 ∧ ¬ 𝑑 ∈ 𝑐 ) ∧ ∀ 𝑓 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏 ) ) ) } |
| 32 | nfcv | ⊢ Ⅎ 𝑐 sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) | |
| 33 | nfcv | ⊢ Ⅎ 𝑔 ( 𝑦 ‘ 𝑐 ) | |
| 34 | nfcv | ⊢ Ⅎ 𝑔 ( 𝑅1 ‘ dom 𝑒 ) | |
| 35 | nfopab1 | ⊢ Ⅎ 𝑔 { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } | |
| 36 | 33 34 35 | nfsup | ⊢ Ⅎ 𝑔 sup ( ( 𝑦 ‘ 𝑐 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) |
| 37 | fveq2 | ⊢ ( 𝑔 = 𝑐 → ( 𝑦 ‘ 𝑔 ) = ( 𝑦 ‘ 𝑐 ) ) | |
| 38 | 37 | supeq1d | ⊢ ( 𝑔 = 𝑐 → sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) = sup ( ( 𝑦 ‘ 𝑐 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) |
| 39 | 32 36 38 | cbvmpt | ⊢ ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) = ( 𝑐 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑐 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) |
| 40 | nfcv | ⊢ Ⅎ 𝑐 ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) | |
| 41 | nffvmpt1 | ⊢ Ⅎ 𝑔 ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑐 ) ) | |
| 42 | rneq | ⊢ ( 𝑔 = 𝑐 → ran 𝑔 = ran 𝑐 ) | |
| 43 | 42 | difeq2d | ⊢ ( 𝑔 = 𝑐 → ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) = ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑐 ) ) |
| 44 | 43 | fveq2d | ⊢ ( 𝑔 = 𝑐 → ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) = ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑐 ) ) ) |
| 45 | 40 41 44 | cbvmpt | ⊢ ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) = ( 𝑐 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑐 ) ) ) |
| 46 | recseq | ⊢ ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) = ( 𝑐 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑐 ) ) ) → recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) = recs ( ( 𝑐 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑐 ) ) ) ) ) | |
| 47 | 45 46 | ax-mp | ⊢ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) = recs ( ( 𝑐 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑐 ) ) ) ) |
| 48 | nfv | ⊢ Ⅎ 𝑐 ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) | |
| 49 | nfv | ⊢ Ⅎ 𝑏 ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) | |
| 50 | nfmpt1 | ⊢ Ⅎ 𝑔 ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) | |
| 51 | 50 | nfrecs | ⊢ Ⅎ 𝑔 recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) |
| 52 | 51 | nfcnv | ⊢ Ⅎ 𝑔 ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) |
| 53 | nfcv | ⊢ Ⅎ 𝑔 { 𝑐 } | |
| 54 | 52 53 | nfima | ⊢ Ⅎ 𝑔 ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) |
| 55 | 54 | nfint | ⊢ Ⅎ 𝑔 ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) |
| 56 | nfcv | ⊢ Ⅎ 𝑔 { 𝑏 } | |
| 57 | 52 56 | nfima | ⊢ Ⅎ 𝑔 ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) |
| 58 | 57 | nfint | ⊢ Ⅎ 𝑔 ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) |
| 59 | 55 58 | nfel | ⊢ Ⅎ 𝑔 ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) |
| 60 | nfcv | ⊢ Ⅎ ℎ V | |
| 61 | nfcv | ⊢ Ⅎ ℎ ( 𝑦 ‘ 𝑔 ) | |
| 62 | nfcv | ⊢ Ⅎ ℎ ( 𝑅1 ‘ dom 𝑒 ) | |
| 63 | nfopab2 | ⊢ Ⅎ ℎ { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } | |
| 64 | 61 62 63 | nfsup | ⊢ Ⅎ ℎ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) |
| 65 | 60 64 | nfmpt | ⊢ Ⅎ ℎ ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) |
| 66 | nfcv | ⊢ Ⅎ ℎ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) | |
| 67 | 65 66 | nffv | ⊢ Ⅎ ℎ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) |
| 68 | 60 67 | nfmpt | ⊢ Ⅎ ℎ ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) |
| 69 | 68 | nfrecs | ⊢ Ⅎ ℎ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) |
| 70 | 69 | nfcnv | ⊢ Ⅎ ℎ ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) |
| 71 | nfcv | ⊢ Ⅎ ℎ { 𝑐 } | |
| 72 | 70 71 | nfima | ⊢ Ⅎ ℎ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) |
| 73 | 72 | nfint | ⊢ Ⅎ ℎ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) |
| 74 | nfcv | ⊢ Ⅎ ℎ { 𝑏 } | |
| 75 | 70 74 | nfima | ⊢ Ⅎ ℎ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) |
| 76 | 75 | nfint | ⊢ Ⅎ ℎ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) |
| 77 | 73 76 | nfel | ⊢ Ⅎ ℎ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) |
| 78 | sneq | ⊢ ( 𝑔 = 𝑐 → { 𝑔 } = { 𝑐 } ) | |
| 79 | 78 | imaeq2d | ⊢ ( 𝑔 = 𝑐 → ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) = ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) ) |
| 80 | 79 | inteqd | ⊢ ( 𝑔 = 𝑐 → ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) = ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) ) |
| 81 | sneq | ⊢ ( ℎ = 𝑏 → { ℎ } = { 𝑏 } ) | |
| 82 | 81 | imaeq2d | ⊢ ( ℎ = 𝑏 → ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) = ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) ) |
| 83 | 82 | inteqd | ⊢ ( ℎ = 𝑏 → ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) = ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) ) |
| 84 | eleq12 | ⊢ ( ( ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) = ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) ∧ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) = ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) ) → ( ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) ↔ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) ) ) | |
| 85 | 80 83 84 | syl2an | ⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) ↔ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) ) ) |
| 86 | 48 49 59 77 85 | cbvopab | ⊢ { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } = { 〈 𝑐 , 𝑏 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) } |
| 87 | fveq2 | ⊢ ( 𝑔 = 𝑐 → ( rank ‘ 𝑔 ) = ( rank ‘ 𝑐 ) ) | |
| 88 | fveq2 | ⊢ ( ℎ = 𝑏 → ( rank ‘ ℎ ) = ( rank ‘ 𝑏 ) ) | |
| 89 | 87 88 | breqan12d | ⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ↔ ( rank ‘ 𝑐 ) E ( rank ‘ 𝑏 ) ) ) |
| 90 | 87 88 | eqeqan12d | ⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ↔ ( rank ‘ 𝑐 ) = ( rank ‘ 𝑏 ) ) ) |
| 91 | simpl | ⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → 𝑔 = 𝑐 ) | |
| 92 | suceq | ⊢ ( ( rank ‘ 𝑔 ) = ( rank ‘ 𝑐 ) → suc ( rank ‘ 𝑔 ) = suc ( rank ‘ 𝑐 ) ) | |
| 93 | 87 92 | syl | ⊢ ( 𝑔 = 𝑐 → suc ( rank ‘ 𝑔 ) = suc ( rank ‘ 𝑐 ) ) |
| 94 | 93 | adantr | ⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → suc ( rank ‘ 𝑔 ) = suc ( rank ‘ 𝑐 ) ) |
| 95 | 94 | fveq2d | ⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) = ( 𝑒 ‘ suc ( rank ‘ 𝑐 ) ) ) |
| 96 | simpr | ⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ℎ = 𝑏 ) | |
| 97 | 91 95 96 | breq123d | ⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ↔ 𝑐 ( 𝑒 ‘ suc ( rank ‘ 𝑐 ) ) 𝑏 ) ) |
| 98 | 90 97 | anbi12d | ⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ↔ ( ( rank ‘ 𝑐 ) = ( rank ‘ 𝑏 ) ∧ 𝑐 ( 𝑒 ‘ suc ( rank ‘ 𝑐 ) ) 𝑏 ) ) ) |
| 99 | 89 98 | orbi12d | ⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) ↔ ( ( rank ‘ 𝑐 ) E ( rank ‘ 𝑏 ) ∨ ( ( rank ‘ 𝑐 ) = ( rank ‘ 𝑏 ) ∧ 𝑐 ( 𝑒 ‘ suc ( rank ‘ 𝑐 ) ) 𝑏 ) ) ) ) |
| 100 | 99 | cbvopabv | ⊢ { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } = { 〈 𝑐 , 𝑏 〉 ∣ ( ( rank ‘ 𝑐 ) E ( rank ‘ 𝑏 ) ∨ ( ( rank ‘ 𝑐 ) = ( rank ‘ 𝑏 ) ∧ 𝑐 ( 𝑒 ‘ suc ( rank ‘ 𝑐 ) ) 𝑏 ) ) } |
| 101 | eqid | ⊢ ( if ( dom 𝑒 = ∪ dom 𝑒 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑒 ) × ( 𝑅1 ‘ dom 𝑒 ) ) ) = ( if ( dom 𝑒 = ∪ dom 𝑒 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑒 ) × ( 𝑅1 ‘ dom 𝑒 ) ) ) | |
| 102 | dmeq | ⊢ ( 𝑙 = 𝑒 → dom 𝑙 = dom 𝑒 ) | |
| 103 | 102 | unieqd | ⊢ ( 𝑙 = 𝑒 → ∪ dom 𝑙 = ∪ dom 𝑒 ) |
| 104 | 102 103 | eqeq12d | ⊢ ( 𝑙 = 𝑒 → ( dom 𝑙 = ∪ dom 𝑙 ↔ dom 𝑒 = ∪ dom 𝑒 ) ) |
| 105 | fveq1 | ⊢ ( 𝑙 = 𝑒 → ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) = ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ) | |
| 106 | 105 | breqd | ⊢ ( 𝑙 = 𝑒 → ( 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ↔ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) |
| 107 | 106 | anbi2d | ⊢ ( 𝑙 = 𝑒 → ( ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ↔ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) ) |
| 108 | 107 | orbi2d | ⊢ ( 𝑙 = 𝑒 → ( ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) ↔ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) ) ) |
| 109 | 108 | opabbidv | ⊢ ( 𝑙 = 𝑒 → { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } = { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } ) |
| 110 | eqidd | ⊢ ( 𝑙 = 𝑒 → ( 𝑦 ‘ 𝑔 ) = ( 𝑦 ‘ 𝑔 ) ) | |
| 111 | 102 | fveq2d | ⊢ ( 𝑙 = 𝑒 → ( 𝑅1 ‘ dom 𝑙 ) = ( 𝑅1 ‘ dom 𝑒 ) ) |
| 112 | 103 | fveq2d | ⊢ ( 𝑙 = 𝑒 → ( 𝑅1 ‘ ∪ dom 𝑙 ) = ( 𝑅1 ‘ ∪ dom 𝑒 ) ) |
| 113 | id | ⊢ ( 𝑙 = 𝑒 → 𝑙 = 𝑒 ) | |
| 114 | 113 103 | fveq12d | ⊢ ( 𝑙 = 𝑒 → ( 𝑙 ‘ ∪ dom 𝑙 ) = ( 𝑒 ‘ ∪ dom 𝑒 ) ) |
| 115 | 114 | breqd | ⊢ ( 𝑙 = 𝑒 → ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 ↔ 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 ) ) |
| 116 | 115 | imbi1d | ⊢ ( 𝑙 = 𝑒 → ( ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ↔ ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ) |
| 117 | 112 116 | raleqbidv | ⊢ ( 𝑙 = 𝑒 → ( ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ↔ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ) |
| 118 | 117 | anbi2d | ⊢ ( 𝑙 = 𝑒 → ( ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ↔ ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ) ) |
| 119 | 112 118 | rexeqbidv | ⊢ ( 𝑙 = 𝑒 → ( ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ↔ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ) ) |
| 120 | 119 | opabbidv | ⊢ ( 𝑙 = 𝑒 → { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } = { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) |
| 121 | 110 111 120 | supeq123d | ⊢ ( 𝑙 = 𝑒 → sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) = sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) |
| 122 | 121 | mpteq2dv | ⊢ ( 𝑙 = 𝑒 → ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) = ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ) |
| 123 | 111 | difeq1d | ⊢ ( 𝑙 = 𝑒 → ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) = ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) |
| 124 | 122 123 | fveq12d | ⊢ ( 𝑙 = 𝑒 → ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) = ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) |
| 125 | 124 | mpteq2dv | ⊢ ( 𝑙 = 𝑒 → ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) = ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) |
| 126 | recseq | ⊢ ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) = ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) → recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) = recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) ) | |
| 127 | 125 126 | syl | ⊢ ( 𝑙 = 𝑒 → recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) = recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) ) |
| 128 | 127 | cnveqd | ⊢ ( 𝑙 = 𝑒 → ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) = ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) ) |
| 129 | 128 | imaeq1d | ⊢ ( 𝑙 = 𝑒 → ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) = ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ) |
| 130 | 129 | inteqd | ⊢ ( 𝑙 = 𝑒 → ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) = ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ) |
| 131 | 128 | imaeq1d | ⊢ ( 𝑙 = 𝑒 → ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) = ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) ) |
| 132 | 131 | inteqd | ⊢ ( 𝑙 = 𝑒 → ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) = ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) ) |
| 133 | 130 132 | eleq12d | ⊢ ( 𝑙 = 𝑒 → ( ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) ↔ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) ) ) |
| 134 | 133 | opabbidv | ⊢ ( 𝑙 = 𝑒 → { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } = { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) |
| 135 | 104 109 134 | ifbieq12d | ⊢ ( 𝑙 = 𝑒 → if ( dom 𝑙 = ∪ dom 𝑙 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) = if ( dom 𝑒 = ∪ dom 𝑒 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ) |
| 136 | 111 | sqxpeqd | ⊢ ( 𝑙 = 𝑒 → ( ( 𝑅1 ‘ dom 𝑙 ) × ( 𝑅1 ‘ dom 𝑙 ) ) = ( ( 𝑅1 ‘ dom 𝑒 ) × ( 𝑅1 ‘ dom 𝑒 ) ) ) |
| 137 | 135 136 | ineq12d | ⊢ ( 𝑙 = 𝑒 → ( if ( dom 𝑙 = ∪ dom 𝑙 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑙 ) × ( 𝑅1 ‘ dom 𝑙 ) ) ) = ( if ( dom 𝑒 = ∪ dom 𝑒 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑒 ) × ( 𝑅1 ‘ dom 𝑒 ) ) ) ) |
| 138 | 137 | cbvmptv | ⊢ ( 𝑙 ∈ V ↦ ( if ( dom 𝑙 = ∪ dom 𝑙 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑙 ) × ( 𝑅1 ‘ dom 𝑙 ) ) ) ) = ( 𝑒 ∈ V ↦ ( if ( dom 𝑒 = ∪ dom 𝑒 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑒 ) × ( 𝑅1 ‘ dom 𝑒 ) ) ) ) |
| 139 | recseq | ⊢ ( ( 𝑙 ∈ V ↦ ( if ( dom 𝑙 = ∪ dom 𝑙 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑙 ) × ( 𝑅1 ‘ dom 𝑙 ) ) ) ) = ( 𝑒 ∈ V ↦ ( if ( dom 𝑒 = ∪ dom 𝑒 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑒 ) × ( 𝑅1 ‘ dom 𝑒 ) ) ) ) → recs ( ( 𝑙 ∈ V ↦ ( if ( dom 𝑙 = ∪ dom 𝑙 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑙 ) × ( 𝑅1 ‘ dom 𝑙 ) ) ) ) ) = recs ( ( 𝑒 ∈ V ↦ ( if ( dom 𝑒 = ∪ dom 𝑒 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑒 ) × ( 𝑅1 ‘ dom 𝑒 ) ) ) ) ) ) | |
| 140 | 138 139 | ax-mp | ⊢ recs ( ( 𝑙 ∈ V ↦ ( if ( dom 𝑙 = ∪ dom 𝑙 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑙 ) × ( 𝑅1 ‘ dom 𝑙 ) ) ) ) ) = recs ( ( 𝑒 ∈ V ↦ ( if ( dom 𝑒 = ∪ dom 𝑒 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑒 ) × ( 𝑅1 ‘ dom 𝑒 ) ) ) ) ) |
| 141 | neeq1 | ⊢ ( 𝑎 = 𝑐 → ( 𝑎 ≠ ∅ ↔ 𝑐 ≠ ∅ ) ) | |
| 142 | fveq2 | ⊢ ( 𝑎 = 𝑐 → ( 𝑦 ‘ 𝑎 ) = ( 𝑦 ‘ 𝑐 ) ) | |
| 143 | pweq | ⊢ ( 𝑎 = 𝑐 → 𝒫 𝑎 = 𝒫 𝑐 ) | |
| 144 | 143 | ineq1d | ⊢ ( 𝑎 = 𝑐 → ( 𝒫 𝑎 ∩ Fin ) = ( 𝒫 𝑐 ∩ Fin ) ) |
| 145 | 144 | difeq1d | ⊢ ( 𝑎 = 𝑐 → ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) = ( ( 𝒫 𝑐 ∩ Fin ) ∖ { ∅ } ) ) |
| 146 | 142 145 | eleq12d | ⊢ ( 𝑎 = 𝑐 → ( ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ↔ ( 𝑦 ‘ 𝑐 ) ∈ ( ( 𝒫 𝑐 ∩ Fin ) ∖ { ∅ } ) ) ) |
| 147 | 141 146 | imbi12d | ⊢ ( 𝑎 = 𝑐 → ( ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ↔ ( 𝑐 ≠ ∅ → ( 𝑦 ‘ 𝑐 ) ∈ ( ( 𝒫 𝑐 ∩ Fin ) ∖ { ∅ } ) ) ) ) |
| 148 | 147 | cbvralvw | ⊢ ( ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ↔ ∀ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑐 ≠ ∅ → ( 𝑦 ‘ 𝑐 ) ∈ ( ( 𝒫 𝑐 ∩ Fin ) ∖ { ∅ } ) ) ) |
| 149 | 2 148 | sylib | ⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑐 ≠ ∅ → ( 𝑦 ‘ 𝑐 ) ∈ ( ( 𝒫 𝑐 ∩ Fin ) ∖ { ∅ } ) ) ) |
| 150 | 31 39 47 86 100 101 140 1 149 | aomclem7 | ⊢ ( 𝜑 → ∃ 𝑏 𝑏 We ( 𝑅1 ‘ 𝐴 ) ) |