This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrange a 9-fold conjunction. (Contributed by Thierry Arnoux, 14-Apr-2019) (Proof shortened by Wolf Lammen, 21-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | an33rean | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝜁 ∧ 𝜎 ∧ 𝜌 ) ) ↔ ( ( 𝜑 ∧ 𝜏 ∧ 𝜌 ) ∧ ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜂 ∧ 𝜎 ) ∧ ( 𝜒 ∧ 𝜁 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
| 2 | 3anan12 | ⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜂 ) ↔ ( 𝜏 ∧ ( 𝜃 ∧ 𝜂 ) ) ) | |
| 3 | 3anrev | ⊢ ( ( 𝜁 ∧ 𝜎 ∧ 𝜌 ) ↔ ( 𝜌 ∧ 𝜎 ∧ 𝜁 ) ) | |
| 4 | 3anass | ⊢ ( ( 𝜌 ∧ 𝜎 ∧ 𝜁 ) ↔ ( 𝜌 ∧ ( 𝜎 ∧ 𝜁 ) ) ) | |
| 5 | 3 4 | bitri | ⊢ ( ( 𝜁 ∧ 𝜎 ∧ 𝜌 ) ↔ ( 𝜌 ∧ ( 𝜎 ∧ 𝜁 ) ) ) |
| 6 | 1 2 5 | 3anbi123i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝜁 ∧ 𝜎 ∧ 𝜌 ) ) ↔ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ∧ ( 𝜏 ∧ ( 𝜃 ∧ 𝜂 ) ) ∧ ( 𝜌 ∧ ( 𝜎 ∧ 𝜁 ) ) ) ) |
| 7 | 3an6 | ⊢ ( ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ∧ ( 𝜏 ∧ ( 𝜃 ∧ 𝜂 ) ) ∧ ( 𝜌 ∧ ( 𝜎 ∧ 𝜁 ) ) ) ↔ ( ( 𝜑 ∧ 𝜏 ∧ 𝜌 ) ∧ ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜂 ) ∧ ( 𝜎 ∧ 𝜁 ) ) ) ) | |
| 8 | anass | ⊢ ( ( ( 𝜃 ∧ 𝜂 ) ∧ 𝜎 ) ↔ ( 𝜃 ∧ ( 𝜂 ∧ 𝜎 ) ) ) | |
| 9 | 8 | anbi2i | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( ( 𝜃 ∧ 𝜂 ) ∧ 𝜎 ) ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ ( 𝜂 ∧ 𝜎 ) ) ) ) |
| 10 | an42 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ ( 𝜂 ∧ 𝜎 ) ) ) ↔ ( ( 𝜓 ∧ 𝜃 ) ∧ ( ( 𝜂 ∧ 𝜎 ) ∧ 𝜒 ) ) ) | |
| 11 | 9 10 | bitri | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( ( 𝜃 ∧ 𝜂 ) ∧ 𝜎 ) ) ↔ ( ( 𝜓 ∧ 𝜃 ) ∧ ( ( 𝜂 ∧ 𝜎 ) ∧ 𝜒 ) ) ) |
| 12 | anass | ⊢ ( ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜂 ) ) ∧ 𝜎 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ ( ( 𝜃 ∧ 𝜂 ) ∧ 𝜎 ) ) ) | |
| 13 | anass | ⊢ ( ( ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜂 ∧ 𝜎 ) ) ∧ 𝜒 ) ↔ ( ( 𝜓 ∧ 𝜃 ) ∧ ( ( 𝜂 ∧ 𝜎 ) ∧ 𝜒 ) ) ) | |
| 14 | 11 12 13 | 3bitr4i | ⊢ ( ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜂 ) ) ∧ 𝜎 ) ↔ ( ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜂 ∧ 𝜎 ) ) ∧ 𝜒 ) ) |
| 15 | 14 | anbi1i | ⊢ ( ( ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜂 ) ) ∧ 𝜎 ) ∧ 𝜁 ) ↔ ( ( ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜂 ∧ 𝜎 ) ) ∧ 𝜒 ) ∧ 𝜁 ) ) |
| 16 | anass | ⊢ ( ( ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜂 ) ) ∧ 𝜎 ) ∧ 𝜁 ) ↔ ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜂 ) ) ∧ ( 𝜎 ∧ 𝜁 ) ) ) | |
| 17 | anass | ⊢ ( ( ( ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜂 ∧ 𝜎 ) ) ∧ 𝜒 ) ∧ 𝜁 ) ↔ ( ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜂 ∧ 𝜎 ) ) ∧ ( 𝜒 ∧ 𝜁 ) ) ) | |
| 18 | 15 16 17 | 3bitr3i | ⊢ ( ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜂 ) ) ∧ ( 𝜎 ∧ 𝜁 ) ) ↔ ( ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜂 ∧ 𝜎 ) ) ∧ ( 𝜒 ∧ 𝜁 ) ) ) |
| 19 | df-3an | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜂 ) ∧ ( 𝜎 ∧ 𝜁 ) ) ↔ ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜂 ) ) ∧ ( 𝜎 ∧ 𝜁 ) ) ) | |
| 20 | df-3an | ⊢ ( ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜂 ∧ 𝜎 ) ∧ ( 𝜒 ∧ 𝜁 ) ) ↔ ( ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜂 ∧ 𝜎 ) ) ∧ ( 𝜒 ∧ 𝜁 ) ) ) | |
| 21 | 18 19 20 | 3bitr4i | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜂 ) ∧ ( 𝜎 ∧ 𝜁 ) ) ↔ ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜂 ∧ 𝜎 ) ∧ ( 𝜒 ∧ 𝜁 ) ) ) |
| 22 | 21 | anbi2i | ⊢ ( ( ( 𝜑 ∧ 𝜏 ∧ 𝜌 ) ∧ ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜂 ) ∧ ( 𝜎 ∧ 𝜁 ) ) ) ↔ ( ( 𝜑 ∧ 𝜏 ∧ 𝜌 ) ∧ ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜂 ∧ 𝜎 ) ∧ ( 𝜒 ∧ 𝜁 ) ) ) ) |
| 23 | 6 7 22 | 3bitri | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝜁 ∧ 𝜎 ∧ 𝜌 ) ) ↔ ( ( 𝜑 ∧ 𝜏 ∧ 𝜌 ) ∧ ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜂 ∧ 𝜎 ) ∧ ( 𝜒 ∧ 𝜁 ) ) ) ) |