This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrange a 9-fold conjunction. (Contributed by Thierry Arnoux, 14-Apr-2019) (Proof shortened by Wolf Lammen, 21-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | an33rean | |- ( ( ( ph /\ ps /\ ch ) /\ ( th /\ ta /\ et ) /\ ( ze /\ si /\ rh ) ) <-> ( ( ph /\ ta /\ rh ) /\ ( ( ps /\ th ) /\ ( et /\ si ) /\ ( ch /\ ze ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass | |- ( ( ph /\ ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) ) |
|
| 2 | 3anan12 | |- ( ( th /\ ta /\ et ) <-> ( ta /\ ( th /\ et ) ) ) |
|
| 3 | 3anrev | |- ( ( ze /\ si /\ rh ) <-> ( rh /\ si /\ ze ) ) |
|
| 4 | 3anass | |- ( ( rh /\ si /\ ze ) <-> ( rh /\ ( si /\ ze ) ) ) |
|
| 5 | 3 4 | bitri | |- ( ( ze /\ si /\ rh ) <-> ( rh /\ ( si /\ ze ) ) ) |
| 6 | 1 2 5 | 3anbi123i | |- ( ( ( ph /\ ps /\ ch ) /\ ( th /\ ta /\ et ) /\ ( ze /\ si /\ rh ) ) <-> ( ( ph /\ ( ps /\ ch ) ) /\ ( ta /\ ( th /\ et ) ) /\ ( rh /\ ( si /\ ze ) ) ) ) |
| 7 | 3an6 | |- ( ( ( ph /\ ( ps /\ ch ) ) /\ ( ta /\ ( th /\ et ) ) /\ ( rh /\ ( si /\ ze ) ) ) <-> ( ( ph /\ ta /\ rh ) /\ ( ( ps /\ ch ) /\ ( th /\ et ) /\ ( si /\ ze ) ) ) ) |
|
| 8 | anass | |- ( ( ( th /\ et ) /\ si ) <-> ( th /\ ( et /\ si ) ) ) |
|
| 9 | 8 | anbi2i | |- ( ( ( ps /\ ch ) /\ ( ( th /\ et ) /\ si ) ) <-> ( ( ps /\ ch ) /\ ( th /\ ( et /\ si ) ) ) ) |
| 10 | an42 | |- ( ( ( ps /\ ch ) /\ ( th /\ ( et /\ si ) ) ) <-> ( ( ps /\ th ) /\ ( ( et /\ si ) /\ ch ) ) ) |
|
| 11 | 9 10 | bitri | |- ( ( ( ps /\ ch ) /\ ( ( th /\ et ) /\ si ) ) <-> ( ( ps /\ th ) /\ ( ( et /\ si ) /\ ch ) ) ) |
| 12 | anass | |- ( ( ( ( ps /\ ch ) /\ ( th /\ et ) ) /\ si ) <-> ( ( ps /\ ch ) /\ ( ( th /\ et ) /\ si ) ) ) |
|
| 13 | anass | |- ( ( ( ( ps /\ th ) /\ ( et /\ si ) ) /\ ch ) <-> ( ( ps /\ th ) /\ ( ( et /\ si ) /\ ch ) ) ) |
|
| 14 | 11 12 13 | 3bitr4i | |- ( ( ( ( ps /\ ch ) /\ ( th /\ et ) ) /\ si ) <-> ( ( ( ps /\ th ) /\ ( et /\ si ) ) /\ ch ) ) |
| 15 | 14 | anbi1i | |- ( ( ( ( ( ps /\ ch ) /\ ( th /\ et ) ) /\ si ) /\ ze ) <-> ( ( ( ( ps /\ th ) /\ ( et /\ si ) ) /\ ch ) /\ ze ) ) |
| 16 | anass | |- ( ( ( ( ( ps /\ ch ) /\ ( th /\ et ) ) /\ si ) /\ ze ) <-> ( ( ( ps /\ ch ) /\ ( th /\ et ) ) /\ ( si /\ ze ) ) ) |
|
| 17 | anass | |- ( ( ( ( ( ps /\ th ) /\ ( et /\ si ) ) /\ ch ) /\ ze ) <-> ( ( ( ps /\ th ) /\ ( et /\ si ) ) /\ ( ch /\ ze ) ) ) |
|
| 18 | 15 16 17 | 3bitr3i | |- ( ( ( ( ps /\ ch ) /\ ( th /\ et ) ) /\ ( si /\ ze ) ) <-> ( ( ( ps /\ th ) /\ ( et /\ si ) ) /\ ( ch /\ ze ) ) ) |
| 19 | df-3an | |- ( ( ( ps /\ ch ) /\ ( th /\ et ) /\ ( si /\ ze ) ) <-> ( ( ( ps /\ ch ) /\ ( th /\ et ) ) /\ ( si /\ ze ) ) ) |
|
| 20 | df-3an | |- ( ( ( ps /\ th ) /\ ( et /\ si ) /\ ( ch /\ ze ) ) <-> ( ( ( ps /\ th ) /\ ( et /\ si ) ) /\ ( ch /\ ze ) ) ) |
|
| 21 | 18 19 20 | 3bitr4i | |- ( ( ( ps /\ ch ) /\ ( th /\ et ) /\ ( si /\ ze ) ) <-> ( ( ps /\ th ) /\ ( et /\ si ) /\ ( ch /\ ze ) ) ) |
| 22 | 21 | anbi2i | |- ( ( ( ph /\ ta /\ rh ) /\ ( ( ps /\ ch ) /\ ( th /\ et ) /\ ( si /\ ze ) ) ) <-> ( ( ph /\ ta /\ rh ) /\ ( ( ps /\ th ) /\ ( et /\ si ) /\ ( ch /\ ze ) ) ) ) |
| 23 | 6 7 22 | 3bitri | |- ( ( ( ph /\ ps /\ ch ) /\ ( th /\ ta /\ et ) /\ ( ze /\ si /\ rh ) ) <-> ( ( ph /\ ta /\ rh ) /\ ( ( ps /\ th ) /\ ( et /\ si ) /\ ( ch /\ ze ) ) ) ) |