This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alzdvds | ⊢ ( 𝑁 ∈ ℤ → ( ∀ 𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ↔ 𝑁 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssz | ⊢ ℕ ⊆ ℤ | |
| 2 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 3 | 2 | abscld | ⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℝ ) |
| 4 | arch | ⊢ ( ( abs ‘ 𝑁 ) ∈ ℝ → ∃ 𝑥 ∈ ℕ ( abs ‘ 𝑁 ) < 𝑥 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑁 ∈ ℤ → ∃ 𝑥 ∈ ℕ ( abs ‘ 𝑁 ) < 𝑥 ) |
| 6 | ssrexv | ⊢ ( ℕ ⊆ ℤ → ( ∃ 𝑥 ∈ ℕ ( abs ‘ 𝑁 ) < 𝑥 → ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑁 ) < 𝑥 ) ) | |
| 7 | 1 5 6 | mpsyl | ⊢ ( 𝑁 ∈ ℤ → ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑁 ) < 𝑥 ) |
| 8 | zre | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) | |
| 9 | ltnle | ⊢ ( ( ( abs ‘ 𝑁 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ 𝑁 ) < 𝑥 ↔ ¬ 𝑥 ≤ ( abs ‘ 𝑁 ) ) ) | |
| 10 | 3 8 9 | syl2an | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) < 𝑥 ↔ ¬ 𝑥 ≤ ( abs ‘ 𝑁 ) ) ) |
| 11 | 10 | rexbidva | ⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑁 ) < 𝑥 ↔ ∃ 𝑥 ∈ ℤ ¬ 𝑥 ≤ ( abs ‘ 𝑁 ) ) ) |
| 12 | rexnal | ⊢ ( ∃ 𝑥 ∈ ℤ ¬ 𝑥 ≤ ( abs ‘ 𝑁 ) ↔ ¬ ∀ 𝑥 ∈ ℤ 𝑥 ≤ ( abs ‘ 𝑁 ) ) | |
| 13 | 11 12 | bitrdi | ⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑥 ∈ ℤ ( abs ‘ 𝑁 ) < 𝑥 ↔ ¬ ∀ 𝑥 ∈ ℤ 𝑥 ≤ ( abs ‘ 𝑁 ) ) ) |
| 14 | 7 13 | mpbid | ⊢ ( 𝑁 ∈ ℤ → ¬ ∀ 𝑥 ∈ ℤ 𝑥 ≤ ( abs ‘ 𝑁 ) ) |
| 15 | 14 | adantl | ⊢ ( ( ∀ 𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ ) → ¬ ∀ 𝑥 ∈ ℤ 𝑥 ≤ ( abs ‘ 𝑁 ) ) |
| 16 | ralim | ⊢ ( ∀ 𝑥 ∈ ℤ ( 𝑥 ∥ 𝑁 → 𝑥 ≤ ( abs ‘ 𝑁 ) ) → ( ∀ 𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → ∀ 𝑥 ∈ ℤ 𝑥 ≤ ( abs ‘ 𝑁 ) ) ) | |
| 17 | dvdsleabs | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝑥 ∥ 𝑁 → 𝑥 ≤ ( abs ‘ 𝑁 ) ) ) | |
| 18 | 17 | 3expb | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑥 ∥ 𝑁 → 𝑥 ≤ ( abs ‘ 𝑁 ) ) ) |
| 19 | 18 | expcom | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝑥 ∈ ℤ → ( 𝑥 ∥ 𝑁 → 𝑥 ≤ ( abs ‘ 𝑁 ) ) ) ) |
| 20 | 19 | ralrimiv | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ∀ 𝑥 ∈ ℤ ( 𝑥 ∥ 𝑁 → 𝑥 ≤ ( abs ‘ 𝑁 ) ) ) |
| 21 | 16 20 | syl11 | ⊢ ( ∀ 𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ∀ 𝑥 ∈ ℤ 𝑥 ≤ ( abs ‘ 𝑁 ) ) ) |
| 22 | 21 | expdimp | ⊢ ( ( ∀ 𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ≠ 0 → ∀ 𝑥 ∈ ℤ 𝑥 ≤ ( abs ‘ 𝑁 ) ) ) |
| 23 | 15 22 | mtod | ⊢ ( ( ∀ 𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ ) → ¬ 𝑁 ≠ 0 ) |
| 24 | nne | ⊢ ( ¬ 𝑁 ≠ 0 ↔ 𝑁 = 0 ) | |
| 25 | 23 24 | sylib | ⊢ ( ( ∀ 𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ ) → 𝑁 = 0 ) |
| 26 | 25 | expcom | ⊢ ( 𝑁 ∈ ℤ → ( ∀ 𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → 𝑁 = 0 ) ) |
| 27 | dvds0 | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∥ 0 ) | |
| 28 | breq2 | ⊢ ( 𝑁 = 0 → ( 𝑥 ∥ 𝑁 ↔ 𝑥 ∥ 0 ) ) | |
| 29 | 27 28 | imbitrrid | ⊢ ( 𝑁 = 0 → ( 𝑥 ∈ ℤ → 𝑥 ∥ 𝑁 ) ) |
| 30 | 29 | ralrimiv | ⊢ ( 𝑁 = 0 → ∀ 𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ) |
| 31 | 26 30 | impbid1 | ⊢ ( 𝑁 ∈ ℤ → ( ∀ 𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ↔ 𝑁 = 0 ) ) |