This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alzdvds | |- ( N e. ZZ -> ( A. x e. ZZ x || N <-> N = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssz | |- NN C_ ZZ |
|
| 2 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 3 | 2 | abscld | |- ( N e. ZZ -> ( abs ` N ) e. RR ) |
| 4 | arch | |- ( ( abs ` N ) e. RR -> E. x e. NN ( abs ` N ) < x ) |
|
| 5 | 3 4 | syl | |- ( N e. ZZ -> E. x e. NN ( abs ` N ) < x ) |
| 6 | ssrexv | |- ( NN C_ ZZ -> ( E. x e. NN ( abs ` N ) < x -> E. x e. ZZ ( abs ` N ) < x ) ) |
|
| 7 | 1 5 6 | mpsyl | |- ( N e. ZZ -> E. x e. ZZ ( abs ` N ) < x ) |
| 8 | zre | |- ( x e. ZZ -> x e. RR ) |
|
| 9 | ltnle | |- ( ( ( abs ` N ) e. RR /\ x e. RR ) -> ( ( abs ` N ) < x <-> -. x <_ ( abs ` N ) ) ) |
|
| 10 | 3 8 9 | syl2an | |- ( ( N e. ZZ /\ x e. ZZ ) -> ( ( abs ` N ) < x <-> -. x <_ ( abs ` N ) ) ) |
| 11 | 10 | rexbidva | |- ( N e. ZZ -> ( E. x e. ZZ ( abs ` N ) < x <-> E. x e. ZZ -. x <_ ( abs ` N ) ) ) |
| 12 | rexnal | |- ( E. x e. ZZ -. x <_ ( abs ` N ) <-> -. A. x e. ZZ x <_ ( abs ` N ) ) |
|
| 13 | 11 12 | bitrdi | |- ( N e. ZZ -> ( E. x e. ZZ ( abs ` N ) < x <-> -. A. x e. ZZ x <_ ( abs ` N ) ) ) |
| 14 | 7 13 | mpbid | |- ( N e. ZZ -> -. A. x e. ZZ x <_ ( abs ` N ) ) |
| 15 | 14 | adantl | |- ( ( A. x e. ZZ x || N /\ N e. ZZ ) -> -. A. x e. ZZ x <_ ( abs ` N ) ) |
| 16 | ralim | |- ( A. x e. ZZ ( x || N -> x <_ ( abs ` N ) ) -> ( A. x e. ZZ x || N -> A. x e. ZZ x <_ ( abs ` N ) ) ) |
|
| 17 | dvdsleabs | |- ( ( x e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( x || N -> x <_ ( abs ` N ) ) ) |
|
| 18 | 17 | 3expb | |- ( ( x e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( x || N -> x <_ ( abs ` N ) ) ) |
| 19 | 18 | expcom | |- ( ( N e. ZZ /\ N =/= 0 ) -> ( x e. ZZ -> ( x || N -> x <_ ( abs ` N ) ) ) ) |
| 20 | 19 | ralrimiv | |- ( ( N e. ZZ /\ N =/= 0 ) -> A. x e. ZZ ( x || N -> x <_ ( abs ` N ) ) ) |
| 21 | 16 20 | syl11 | |- ( A. x e. ZZ x || N -> ( ( N e. ZZ /\ N =/= 0 ) -> A. x e. ZZ x <_ ( abs ` N ) ) ) |
| 22 | 21 | expdimp | |- ( ( A. x e. ZZ x || N /\ N e. ZZ ) -> ( N =/= 0 -> A. x e. ZZ x <_ ( abs ` N ) ) ) |
| 23 | 15 22 | mtod | |- ( ( A. x e. ZZ x || N /\ N e. ZZ ) -> -. N =/= 0 ) |
| 24 | nne | |- ( -. N =/= 0 <-> N = 0 ) |
|
| 25 | 23 24 | sylib | |- ( ( A. x e. ZZ x || N /\ N e. ZZ ) -> N = 0 ) |
| 26 | 25 | expcom | |- ( N e. ZZ -> ( A. x e. ZZ x || N -> N = 0 ) ) |
| 27 | dvds0 | |- ( x e. ZZ -> x || 0 ) |
|
| 28 | breq2 | |- ( N = 0 -> ( x || N <-> x || 0 ) ) |
|
| 29 | 27 28 | imbitrrid | |- ( N = 0 -> ( x e. ZZ -> x || N ) ) |
| 30 | 29 | ralrimiv | |- ( N = 0 -> A. x e. ZZ x || N ) |
| 31 | 26 30 | impbid1 | |- ( N e. ZZ -> ( A. x e. ZZ x || N <-> N = 0 ) ) |