This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for algcvgb . (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | algcvgblem | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 ≠ 0 → 𝑁 < 𝑀 ) ↔ ( ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ∧ ( 𝑀 = 0 → 𝑁 = 0 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imor | ⊢ ( ( 𝑁 ≠ 0 → 𝑁 < 𝑀 ) ↔ ( ¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀 ) ) | |
| 2 | 0re | ⊢ 0 ∈ ℝ | |
| 3 | nn0re | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 5 | ltnle | ⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 0 < 𝑀 ↔ ¬ 𝑀 ≤ 0 ) ) | |
| 6 | 2 4 5 | sylancr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 < 𝑀 ↔ ¬ 𝑀 ≤ 0 ) ) |
| 7 | nn0le0eq0 | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 0 ↔ 𝑀 = 0 ) ) | |
| 8 | 7 | notbid | ⊢ ( 𝑀 ∈ ℕ0 → ( ¬ 𝑀 ≤ 0 ↔ ¬ 𝑀 = 0 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ¬ 𝑀 ≤ 0 ↔ ¬ 𝑀 = 0 ) ) |
| 10 | 6 9 | bitrd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 < 𝑀 ↔ ¬ 𝑀 = 0 ) ) |
| 11 | df-ne | ⊢ ( 𝑀 ≠ 0 ↔ ¬ 𝑀 = 0 ) | |
| 12 | 10 11 | bitr4di | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 < 𝑀 ↔ 𝑀 ≠ 0 ) ) |
| 13 | 12 | anbi2d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ¬ 𝑁 ≠ 0 ∧ 0 < 𝑀 ) ↔ ( ¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0 ) ) ) |
| 14 | nne | ⊢ ( ¬ 𝑁 ≠ 0 ↔ 𝑁 = 0 ) | |
| 15 | breq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 < 𝑀 ↔ 0 < 𝑀 ) ) | |
| 16 | 14 15 | sylbi | ⊢ ( ¬ 𝑁 ≠ 0 → ( 𝑁 < 𝑀 ↔ 0 < 𝑀 ) ) |
| 17 | 16 | biimpar | ⊢ ( ( ¬ 𝑁 ≠ 0 ∧ 0 < 𝑀 ) → 𝑁 < 𝑀 ) |
| 18 | 13 17 | biimtrrdi | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0 ) → 𝑁 < 𝑀 ) ) |
| 19 | 18 | expd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ¬ 𝑁 ≠ 0 → ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ) ) |
| 20 | ax-1 | ⊢ ( 𝑁 < 𝑀 → ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ) | |
| 21 | jaob | ⊢ ( ( ( ¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀 ) → ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ) ↔ ( ( ¬ 𝑁 ≠ 0 → ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ) ∧ ( 𝑁 < 𝑀 → ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ) ) ) | |
| 22 | 19 20 21 | sylanblrc | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀 ) → ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ) ) |
| 23 | 1 22 | biimtrid | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 ≠ 0 → 𝑁 < 𝑀 ) → ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ) ) |
| 24 | nn0ge0 | ⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) | |
| 25 | 24 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ 𝑁 ) |
| 26 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 27 | lelttr | ⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 0 ≤ 𝑁 ∧ 𝑁 < 𝑀 ) → 0 < 𝑀 ) ) | |
| 28 | 2 27 | mp3an1 | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 0 ≤ 𝑁 ∧ 𝑁 < 𝑀 ) → 0 < 𝑀 ) ) |
| 29 | 26 3 28 | syl2anr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 0 ≤ 𝑁 ∧ 𝑁 < 𝑀 ) → 0 < 𝑀 ) ) |
| 30 | 25 29 | mpand | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < 𝑀 → 0 < 𝑀 ) ) |
| 31 | 30 12 | sylibd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < 𝑀 → 𝑀 ≠ 0 ) ) |
| 32 | 31 | imim2d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 ≠ 0 → 𝑁 < 𝑀 ) → ( 𝑁 ≠ 0 → 𝑀 ≠ 0 ) ) ) |
| 33 | 23 32 | jcad | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 ≠ 0 → 𝑁 < 𝑀 ) → ( ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ∧ ( 𝑁 ≠ 0 → 𝑀 ≠ 0 ) ) ) ) |
| 34 | pm3.34 | ⊢ ( ( ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ∧ ( 𝑁 ≠ 0 → 𝑀 ≠ 0 ) ) → ( 𝑁 ≠ 0 → 𝑁 < 𝑀 ) ) | |
| 35 | 33 34 | impbid1 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 ≠ 0 → 𝑁 < 𝑀 ) ↔ ( ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ∧ ( 𝑁 ≠ 0 → 𝑀 ≠ 0 ) ) ) ) |
| 36 | con34b | ⊢ ( ( 𝑀 = 0 → 𝑁 = 0 ) ↔ ( ¬ 𝑁 = 0 → ¬ 𝑀 = 0 ) ) | |
| 37 | df-ne | ⊢ ( 𝑁 ≠ 0 ↔ ¬ 𝑁 = 0 ) | |
| 38 | 37 11 | imbi12i | ⊢ ( ( 𝑁 ≠ 0 → 𝑀 ≠ 0 ) ↔ ( ¬ 𝑁 = 0 → ¬ 𝑀 = 0 ) ) |
| 39 | 36 38 | bitr4i | ⊢ ( ( 𝑀 = 0 → 𝑁 = 0 ) ↔ ( 𝑁 ≠ 0 → 𝑀 ≠ 0 ) ) |
| 40 | 39 | anbi2i | ⊢ ( ( ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ∧ ( 𝑀 = 0 → 𝑁 = 0 ) ) ↔ ( ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ∧ ( 𝑁 ≠ 0 → 𝑀 ≠ 0 ) ) ) |
| 41 | 35 40 | bitr4di | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 ≠ 0 → 𝑁 < 𝑀 ) ↔ ( ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ∧ ( 𝑀 = 0 → 𝑁 = 0 ) ) ) ) |