This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for algcvgb . (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | algcvgblem | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( N =/= 0 -> N < M ) <-> ( ( M =/= 0 -> N < M ) /\ ( M = 0 -> N = 0 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imor | |- ( ( N =/= 0 -> N < M ) <-> ( -. N =/= 0 \/ N < M ) ) |
|
| 2 | 0re | |- 0 e. RR |
|
| 3 | nn0re | |- ( M e. NN0 -> M e. RR ) |
|
| 4 | 3 | adantr | |- ( ( M e. NN0 /\ N e. NN0 ) -> M e. RR ) |
| 5 | ltnle | |- ( ( 0 e. RR /\ M e. RR ) -> ( 0 < M <-> -. M <_ 0 ) ) |
|
| 6 | 2 4 5 | sylancr | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( 0 < M <-> -. M <_ 0 ) ) |
| 7 | nn0le0eq0 | |- ( M e. NN0 -> ( M <_ 0 <-> M = 0 ) ) |
|
| 8 | 7 | notbid | |- ( M e. NN0 -> ( -. M <_ 0 <-> -. M = 0 ) ) |
| 9 | 8 | adantr | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( -. M <_ 0 <-> -. M = 0 ) ) |
| 10 | 6 9 | bitrd | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( 0 < M <-> -. M = 0 ) ) |
| 11 | df-ne | |- ( M =/= 0 <-> -. M = 0 ) |
|
| 12 | 10 11 | bitr4di | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( 0 < M <-> M =/= 0 ) ) |
| 13 | 12 | anbi2d | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( -. N =/= 0 /\ 0 < M ) <-> ( -. N =/= 0 /\ M =/= 0 ) ) ) |
| 14 | nne | |- ( -. N =/= 0 <-> N = 0 ) |
|
| 15 | breq1 | |- ( N = 0 -> ( N < M <-> 0 < M ) ) |
|
| 16 | 14 15 | sylbi | |- ( -. N =/= 0 -> ( N < M <-> 0 < M ) ) |
| 17 | 16 | biimpar | |- ( ( -. N =/= 0 /\ 0 < M ) -> N < M ) |
| 18 | 13 17 | biimtrrdi | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( -. N =/= 0 /\ M =/= 0 ) -> N < M ) ) |
| 19 | 18 | expd | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( -. N =/= 0 -> ( M =/= 0 -> N < M ) ) ) |
| 20 | ax-1 | |- ( N < M -> ( M =/= 0 -> N < M ) ) |
|
| 21 | jaob | |- ( ( ( -. N =/= 0 \/ N < M ) -> ( M =/= 0 -> N < M ) ) <-> ( ( -. N =/= 0 -> ( M =/= 0 -> N < M ) ) /\ ( N < M -> ( M =/= 0 -> N < M ) ) ) ) |
|
| 22 | 19 20 21 | sylanblrc | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( -. N =/= 0 \/ N < M ) -> ( M =/= 0 -> N < M ) ) ) |
| 23 | 1 22 | biimtrid | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( N =/= 0 -> N < M ) -> ( M =/= 0 -> N < M ) ) ) |
| 24 | nn0ge0 | |- ( N e. NN0 -> 0 <_ N ) |
|
| 25 | 24 | adantl | |- ( ( M e. NN0 /\ N e. NN0 ) -> 0 <_ N ) |
| 26 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 27 | lelttr | |- ( ( 0 e. RR /\ N e. RR /\ M e. RR ) -> ( ( 0 <_ N /\ N < M ) -> 0 < M ) ) |
|
| 28 | 2 27 | mp3an1 | |- ( ( N e. RR /\ M e. RR ) -> ( ( 0 <_ N /\ N < M ) -> 0 < M ) ) |
| 29 | 26 3 28 | syl2anr | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( 0 <_ N /\ N < M ) -> 0 < M ) ) |
| 30 | 25 29 | mpand | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( N < M -> 0 < M ) ) |
| 31 | 30 12 | sylibd | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( N < M -> M =/= 0 ) ) |
| 32 | 31 | imim2d | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( N =/= 0 -> N < M ) -> ( N =/= 0 -> M =/= 0 ) ) ) |
| 33 | 23 32 | jcad | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( N =/= 0 -> N < M ) -> ( ( M =/= 0 -> N < M ) /\ ( N =/= 0 -> M =/= 0 ) ) ) ) |
| 34 | pm3.34 | |- ( ( ( M =/= 0 -> N < M ) /\ ( N =/= 0 -> M =/= 0 ) ) -> ( N =/= 0 -> N < M ) ) |
|
| 35 | 33 34 | impbid1 | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( N =/= 0 -> N < M ) <-> ( ( M =/= 0 -> N < M ) /\ ( N =/= 0 -> M =/= 0 ) ) ) ) |
| 36 | con34b | |- ( ( M = 0 -> N = 0 ) <-> ( -. N = 0 -> -. M = 0 ) ) |
|
| 37 | df-ne | |- ( N =/= 0 <-> -. N = 0 ) |
|
| 38 | 37 11 | imbi12i | |- ( ( N =/= 0 -> M =/= 0 ) <-> ( -. N = 0 -> -. M = 0 ) ) |
| 39 | 36 38 | bitr4i | |- ( ( M = 0 -> N = 0 ) <-> ( N =/= 0 -> M =/= 0 ) ) |
| 40 | 39 | anbi2i | |- ( ( ( M =/= 0 -> N < M ) /\ ( M = 0 -> N = 0 ) ) <-> ( ( M =/= 0 -> N < M ) /\ ( N =/= 0 -> M =/= 0 ) ) ) |
| 41 | 35 40 | bitr4di | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( N =/= 0 -> N < M ) <-> ( ( M =/= 0 -> N < M ) /\ ( M = 0 -> N = 0 ) ) ) ) |