This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the adjoint function. (Contributed by NM, 25-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ajval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ajval.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| ajval.3 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ajval.4 | ⊢ 𝑄 = ( ·𝑖OLD ‘ 𝑊 ) | ||
| ajval.5 | ⊢ 𝐴 = ( 𝑈 adj 𝑊 ) | ||
| Assertion | ajval | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝐴 ‘ 𝑇 ) = ( ℩ 𝑠 ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ajval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ajval.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | ajval.3 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 4 | ajval.4 | ⊢ 𝑄 = ( ·𝑖OLD ‘ 𝑊 ) | |
| 5 | ajval.5 | ⊢ 𝐴 = ( 𝑈 adj 𝑊 ) | |
| 6 | phnv | ⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) | |
| 7 | 1 2 3 4 5 | ajfval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐴 = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ) |
| 8 | 6 7 | sylan | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝑊 ∈ NrmCVec ) → 𝐴 = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ) |
| 9 | 8 | fveq1d | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝑊 ∈ NrmCVec ) → ( 𝐴 ‘ 𝑇 ) = ( { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ‘ 𝑇 ) ) |
| 10 | 9 | 3adant3 | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝐴 ‘ 𝑇 ) = ( { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ‘ 𝑇 ) ) |
| 11 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 12 | fex | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑋 ∈ V ) → 𝑇 ∈ V ) | |
| 13 | 11 12 | mpan2 | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → 𝑇 ∈ V ) |
| 14 | eqid | ⊢ { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } | |
| 15 | feq1 | ⊢ ( 𝑡 = 𝑇 → ( 𝑡 : 𝑋 ⟶ 𝑌 ↔ 𝑇 : 𝑋 ⟶ 𝑌 ) ) | |
| 16 | fveq1 | ⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) | |
| 17 | 16 | oveq1d | ⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) ) |
| 18 | 17 | eqeq1d | ⊢ ( 𝑡 = 𝑇 → ( ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ↔ ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) |
| 19 | 18 | 2ralbidv | ⊢ ( 𝑡 = 𝑇 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) |
| 20 | 15 19 | 3anbi13d | ⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ↔ ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) |
| 21 | 14 20 | fvopab5 | ⊢ ( 𝑇 ∈ V → ( { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ‘ 𝑇 ) = ( ℩ 𝑠 ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) |
| 22 | 13 21 | syl | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ‘ 𝑇 ) = ( ℩ 𝑠 ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) |
| 23 | 3anass | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ↔ ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) | |
| 24 | 23 | baib | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ↔ ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) |
| 25 | 24 | iotabidv | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ℩ 𝑠 ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) = ( ℩ 𝑠 ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) |
| 26 | 22 25 | eqtrd | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ‘ 𝑇 ) = ( ℩ 𝑠 ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) |
| 27 | 26 | 3ad2ant3 | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ‘ 𝑇 ) = ( ℩ 𝑠 ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) |
| 28 | 10 27 | eqtrd | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝐴 ‘ 𝑇 ) = ( ℩ 𝑠 ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) |