This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The adjoint function. (Contributed by NM, 25-Jan-2008) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ajfval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ajfval.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| ajfval.3 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ajfval.4 | ⊢ 𝑄 = ( ·𝑖OLD ‘ 𝑊 ) | ||
| ajfval.5 | ⊢ 𝐴 = ( 𝑈 adj 𝑊 ) | ||
| Assertion | ajfval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐴 = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ajfval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ajfval.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | ajfval.3 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 4 | ajfval.4 | ⊢ 𝑄 = ( ·𝑖OLD ‘ 𝑊 ) | |
| 5 | ajfval.5 | ⊢ 𝐴 = ( 𝑈 adj 𝑊 ) | |
| 6 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = ( BaseSet ‘ 𝑈 ) ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = 𝑋 ) |
| 8 | 7 | feq2d | ⊢ ( 𝑢 = 𝑈 → ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) ↔ 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 ) ) ) |
| 9 | 7 | feq3d | ⊢ ( 𝑢 = 𝑈 → ( 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) ↔ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋 ) ) |
| 10 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( ·𝑖OLD ‘ 𝑢 ) = ( ·𝑖OLD ‘ 𝑈 ) ) | |
| 11 | 10 3 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( ·𝑖OLD ‘ 𝑢 ) = 𝑃 ) |
| 12 | 11 | oveqd | ⊢ ( 𝑢 = 𝑈 → ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) |
| 13 | 12 | eqeq2d | ⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ↔ ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) |
| 14 | 13 | ralbidv | ⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) |
| 15 | 7 14 | raleqbidv | ⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) |
| 16 | 8 9 15 | 3anbi123d | ⊢ ( 𝑢 = 𝑈 → ( ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ) ↔ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) |
| 17 | 16 | opabbidv | ⊢ ( 𝑢 = 𝑈 → { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ) } = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ) |
| 18 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( BaseSet ‘ 𝑤 ) = ( BaseSet ‘ 𝑊 ) ) | |
| 19 | 18 2 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( BaseSet ‘ 𝑤 ) = 𝑌 ) |
| 20 | 19 | feq3d | ⊢ ( 𝑤 = 𝑊 → ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 ) ↔ 𝑡 : 𝑋 ⟶ 𝑌 ) ) |
| 21 | 19 | feq2d | ⊢ ( 𝑤 = 𝑊 → ( 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋 ↔ 𝑠 : 𝑌 ⟶ 𝑋 ) ) |
| 22 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( ·𝑖OLD ‘ 𝑤 ) = ( ·𝑖OLD ‘ 𝑊 ) ) | |
| 23 | 22 4 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( ·𝑖OLD ‘ 𝑤 ) = 𝑄 ) |
| 24 | 23 | oveqd | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) ) |
| 25 | 24 | eqeq1d | ⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ↔ ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) |
| 26 | 19 25 | raleqbidv | ⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) |
| 27 | 26 | ralbidv | ⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) |
| 28 | 20 21 27 | 3anbi123d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ↔ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) |
| 29 | 28 | opabbidv | ⊢ ( 𝑤 = 𝑊 → { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ) |
| 30 | df-aj | ⊢ adj = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ) } ) | |
| 31 | ovex | ⊢ ( 𝑌 ↑m 𝑋 ) ∈ V | |
| 32 | ovex | ⊢ ( 𝑋 ↑m 𝑌 ) ∈ V | |
| 33 | 31 32 | xpex | ⊢ ( ( 𝑌 ↑m 𝑋 ) × ( 𝑋 ↑m 𝑌 ) ) ∈ V |
| 34 | 2 | fvexi | ⊢ 𝑌 ∈ V |
| 35 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 36 | 34 35 | elmap | ⊢ ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝑡 : 𝑋 ⟶ 𝑌 ) |
| 37 | 35 34 | elmap | ⊢ ( 𝑠 ∈ ( 𝑋 ↑m 𝑌 ) ↔ 𝑠 : 𝑌 ⟶ 𝑋 ) |
| 38 | 36 37 | anbi12i | ⊢ ( ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝑠 ∈ ( 𝑋 ↑m 𝑌 ) ) ↔ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ) ) |
| 39 | 38 | biimpri | ⊢ ( ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ) → ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝑠 ∈ ( 𝑋 ↑m 𝑌 ) ) ) |
| 40 | 39 | 3adant3 | ⊢ ( ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) → ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝑠 ∈ ( 𝑋 ↑m 𝑌 ) ) ) |
| 41 | 40 | ssopab2i | ⊢ { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ⊆ { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝑠 ∈ ( 𝑋 ↑m 𝑌 ) ) } |
| 42 | df-xp | ⊢ ( ( 𝑌 ↑m 𝑋 ) × ( 𝑋 ↑m 𝑌 ) ) = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝑠 ∈ ( 𝑋 ↑m 𝑌 ) ) } | |
| 43 | 41 42 | sseqtrri | ⊢ { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ⊆ ( ( 𝑌 ↑m 𝑋 ) × ( 𝑋 ↑m 𝑌 ) ) |
| 44 | 33 43 | ssexi | ⊢ { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ∈ V |
| 45 | 17 29 30 44 | ovmpo | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑈 adj 𝑊 ) = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ) |
| 46 | 5 45 | eqtrid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐴 = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : 𝑋 ⟶ 𝑌 ∧ 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ) |