This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The adjoint of an operator is linear. Proposition 1 of AkhiezerGlazman p. 80. (Contributed by NM, 17-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjlnop | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) ∈ LinOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmadjrn | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) | |
| 2 | dmadjop | ⊢ ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) |
| 4 | simp2 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → 𝑤 ∈ ℋ ) | |
| 5 | adjcl | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑦 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ∈ ℋ ) | |
| 6 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ∈ ℋ ) | |
| 7 | 5 6 | sylan2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 ∈ dom adjℎ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ∈ ℋ ) |
| 8 | 7 | an12s | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ∈ ℋ ) |
| 9 | 8 | adantrr | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ∈ ℋ ) |
| 10 | 9 | 3adant2 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ∈ ℋ ) |
| 11 | adjcl | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑧 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ∈ ℋ ) | |
| 12 | 11 | adantrl | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ∈ ℋ ) |
| 13 | 12 | 3adant2 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ∈ ℋ ) |
| 14 | his7 | ⊢ ( ( 𝑤 ∈ ℋ ∧ ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ∈ ℋ ∧ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ∈ ℋ ) → ( 𝑤 ·ih ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) = ( ( 𝑤 ·ih ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) + ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) ) | |
| 15 | 4 10 13 14 | syl3anc | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( 𝑤 ·ih ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) = ( ( 𝑤 ·ih ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) + ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) ) |
| 16 | adj2 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) = ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) | |
| 17 | 16 | 3adant3l | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) = ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 18 | 17 | oveq2d | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( ∗ ‘ 𝑥 ) · ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) · ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 19 | simp3l | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → 𝑥 ∈ ℂ ) | |
| 20 | dmadjop | ⊢ ( 𝑇 ∈ dom adjℎ → 𝑇 : ℋ ⟶ ℋ ) | |
| 21 | 20 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ 𝑤 ) ∈ ℋ ) |
| 22 | 21 | 3adant3 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑇 ‘ 𝑤 ) ∈ ℋ ) |
| 23 | simp3r | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → 𝑦 ∈ ℋ ) | |
| 24 | his5 | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 ‘ 𝑤 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑤 ) ·ih ( 𝑥 ·ℎ 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) · ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) ) ) | |
| 25 | 19 22 23 24 | syl3anc | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑤 ) ·ih ( 𝑥 ·ℎ 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) · ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) ) ) |
| 26 | simp2 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → 𝑤 ∈ ℋ ) | |
| 27 | 5 | adantrl | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ∈ ℋ ) |
| 28 | 27 | 3adant2 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ∈ ℋ ) |
| 29 | his5 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ∧ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ∈ ℋ ) → ( 𝑤 ·ih ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) = ( ( ∗ ‘ 𝑥 ) · ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) | |
| 30 | 19 26 28 29 | syl3anc | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑤 ·ih ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) = ( ( ∗ ‘ 𝑥 ) · ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 31 | 18 25 30 | 3eqtr4d | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑤 ) ·ih ( 𝑥 ·ℎ 𝑦 ) ) = ( 𝑤 ·ih ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 32 | 31 | 3adant3r | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑤 ) ·ih ( 𝑥 ·ℎ 𝑦 ) ) = ( 𝑤 ·ih ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 33 | adj2 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑧 ) = ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) | |
| 34 | 33 | 3adant3l | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑧 ) = ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) |
| 35 | 32 34 | oveq12d | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( ( 𝑇 ‘ 𝑤 ) ·ih ( 𝑥 ·ℎ 𝑦 ) ) + ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑧 ) ) = ( ( 𝑤 ·ih ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) + ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) ) |
| 36 | 21 | 3adant3 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( 𝑇 ‘ 𝑤 ) ∈ ℋ ) |
| 37 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) | |
| 38 | 37 | adantr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
| 39 | 38 | 3ad2ant3 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
| 40 | simp3r | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → 𝑧 ∈ ℋ ) | |
| 41 | his7 | ⊢ ( ( ( 𝑇 ‘ 𝑤 ) ∈ ℋ ∧ ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑤 ) ·ih ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( ( 𝑇 ‘ 𝑤 ) ·ih ( 𝑥 ·ℎ 𝑦 ) ) + ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑧 ) ) ) | |
| 42 | 36 39 40 41 | syl3anc | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑤 ) ·ih ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( ( 𝑇 ‘ 𝑤 ) ·ih ( 𝑥 ·ℎ 𝑦 ) ) + ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑧 ) ) ) |
| 43 | hvaddcl | ⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) | |
| 44 | 37 43 | sylan | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 45 | adj2 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) → ( ( 𝑇 ‘ 𝑤 ) ·ih ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) | |
| 46 | 44 45 | syl3an3 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑤 ) ·ih ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) |
| 47 | 42 46 | eqtr3d | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( ( 𝑇 ‘ 𝑤 ) ·ih ( 𝑥 ·ℎ 𝑦 ) ) + ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑧 ) ) = ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) |
| 48 | 15 35 47 | 3eqtr2rd | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑤 ∈ ℋ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( 𝑤 ·ih ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) ) |
| 49 | 48 | 3com23 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( 𝑤 ·ih ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) ) |
| 50 | 49 | 3expa | ⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) ∧ 𝑤 ∈ ℋ ) → ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( 𝑤 ·ih ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) ) |
| 51 | 50 | ralrimiva | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ∀ 𝑤 ∈ ℋ ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( 𝑤 ·ih ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) ) |
| 52 | adjcl | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ∈ ℋ ) | |
| 53 | 44 52 | sylan2 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ∈ ℋ ) |
| 54 | hvaddcl | ⊢ ( ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ∈ ℋ ∧ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ∈ ℋ ) → ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ∈ ℋ ) | |
| 55 | 8 11 54 | syl2an | ⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ ( 𝑇 ∈ dom adjℎ ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ∈ ℋ ) |
| 56 | 55 | anandis | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ∈ ℋ ) |
| 57 | hial2eq2 | ⊢ ( ( ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ∈ ℋ ∧ ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ∈ ℋ ) → ( ∀ 𝑤 ∈ ℋ ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( 𝑤 ·ih ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) ↔ ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) ) | |
| 58 | 53 56 57 | syl2anc | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ∀ 𝑤 ∈ ℋ ( 𝑤 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( 𝑤 ·ih ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) ↔ ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) ) |
| 59 | 51 58 | mpbid | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) |
| 60 | 59 | exp32 | ⊢ ( 𝑇 ∈ dom adjℎ → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑧 ∈ ℋ → ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) ) ) |
| 61 | 60 | ralrimdv | ⊢ ( 𝑇 ∈ dom adjℎ → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ∀ 𝑧 ∈ ℋ ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) ) |
| 62 | 61 | ralrimivv | ⊢ ( 𝑇 ∈ dom adjℎ → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) |
| 63 | ellnop | ⊢ ( ( adjℎ ‘ 𝑇 ) ∈ LinOp ↔ ( ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( adjℎ ‘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑧 ) ) ) ) | |
| 64 | 3 62 63 | sylanbrc | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) ∈ LinOp ) |