This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An operator is bounded and linear iff its adjoint is. (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjbdlnb | ⊢ ( 𝑇 ∈ BndLinOp ↔ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adjbdln | ⊢ ( 𝑇 ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) | |
| 2 | bdopadj | ⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) | |
| 3 | dmadjrnb | ⊢ ( 𝑇 ∈ dom adjℎ ↔ ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) | |
| 4 | 2 3 | sylibr | ⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → 𝑇 ∈ dom adjℎ ) |
| 5 | cnvadj | ⊢ ◡ adjℎ = adjℎ | |
| 6 | 5 | fveq1i | ⊢ ( ◡ adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) |
| 7 | adj1o | ⊢ adjℎ : dom adjℎ –1-1-onto→ dom adjℎ | |
| 8 | simpl | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) → 𝑇 ∈ dom adjℎ ) | |
| 9 | f1ocnvfv1 | ⊢ ( ( adjℎ : dom adjℎ –1-1-onto→ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) → ( ◡ adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) | |
| 10 | 7 8 9 | sylancr | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) → ( ◡ adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) |
| 11 | 6 10 | eqtr3id | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) |
| 12 | adjbdln | ⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ∈ BndLinOp ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ∈ BndLinOp ) |
| 14 | 11 13 | eqeltrrd | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) → 𝑇 ∈ BndLinOp ) |
| 15 | 4 14 | mpancom | ⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → 𝑇 ∈ BndLinOp ) |
| 16 | 1 15 | impbii | ⊢ ( 𝑇 ∈ BndLinOp ↔ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) |