This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The adjoint function equals its converse. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvadj | ⊢ ◡ adjℎ = adjℎ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvopab | ⊢ ◡ { 〈 𝑢 , 𝑡 〉 ∣ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) } = { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) } | |
| 2 | 3ancoma | ⊢ ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) | |
| 3 | ffvelcdm | ⊢ ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑢 ‘ 𝑦 ) ∈ ℋ ) | |
| 4 | ax-his1 | ⊢ ( ( ( 𝑢 ‘ 𝑦 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) = ( ∗ ‘ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) ) | |
| 5 | 3 4 | sylan | ⊢ ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) = ( ∗ ‘ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) ) |
| 6 | 5 | adantrl | ⊢ ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) = ( ∗ ‘ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) ) |
| 7 | ffvelcdm | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑡 ‘ 𝑥 ) ∈ ℋ ) | |
| 8 | ax-his1 | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑡 ‘ 𝑥 ) ∈ ℋ ) → ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ∗ ‘ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ∗ ‘ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 10 | 9 | adantll | ⊢ ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ∗ ‘ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 11 | 6 10 | eqeq12d | ⊢ ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) = ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) ↔ ( ∗ ‘ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) = ( ∗ ‘ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) |
| 12 | 11 | ancoms | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) = ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) ↔ ( ∗ ‘ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) = ( ∗ ‘ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) |
| 13 | hicl | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑢 ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ∈ ℂ ) | |
| 14 | 3 13 | sylan2 | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ∈ ℂ ) |
| 15 | 14 | adantll | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ∈ ℂ ) |
| 16 | hicl | ⊢ ( ( ( 𝑡 ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ∈ ℂ ) | |
| 17 | 7 16 | sylan | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ∈ ℂ ) |
| 18 | 17 | adantrl | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ∈ ℂ ) |
| 19 | cj11 | ⊢ ( ( ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ∈ ℂ ∧ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ∈ ℂ ) → ( ( ∗ ‘ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) = ( ∗ ‘ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) | |
| 20 | 15 18 19 | syl2anc | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ∗ ‘ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) = ( ∗ ‘ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 21 | 12 20 | bitr2d | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) = ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) ) ) |
| 22 | 21 | an4s | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) = ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) ) ) |
| 23 | 22 | anassrs | ⊢ ( ( ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) = ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) ) ) |
| 24 | eqcom | ⊢ ( ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) = ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) ↔ ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) ) | |
| 25 | 23 24 | bitrdi | ⊢ ( ( ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 26 | 25 | ralbidva | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 27 | 26 | ralbidva | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 28 | ralcom | ⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) ↔ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) ) | |
| 29 | 27 28 | bitrdi | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 30 | 29 | pm5.32i | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) ∧ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 31 | df-3an | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) | |
| 32 | df-3an | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) ) ↔ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) ∧ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) ) ) | |
| 33 | 30 31 32 | 3bitr4i | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 34 | 2 33 | bitri | ⊢ ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 35 | 34 | opabbii | ⊢ { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) } = { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) ) } |
| 36 | 1 35 | eqtri | ⊢ ◡ { 〈 𝑢 , 𝑡 〉 ∣ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) } = { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) ) } |
| 37 | dfadj2 | ⊢ adjℎ = { 〈 𝑢 , 𝑡 〉 ∣ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) } | |
| 38 | 37 | cnveqi | ⊢ ◡ adjℎ = ◡ { 〈 𝑢 , 𝑡 〉 ∣ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) } |
| 39 | dfadj2 | ⊢ adjℎ = { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 ·ih ( 𝑡 ‘ 𝑥 ) ) = ( ( 𝑢 ‘ 𝑦 ) ·ih 𝑥 ) ) } | |
| 40 | 36 38 39 | 3eqtr4i | ⊢ ◡ adjℎ = adjℎ |