This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An operator is bounded and linear iff its adjoint is. (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjbdlnb | |- ( T e. BndLinOp <-> ( adjh ` T ) e. BndLinOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adjbdln | |- ( T e. BndLinOp -> ( adjh ` T ) e. BndLinOp ) |
|
| 2 | bdopadj | |- ( ( adjh ` T ) e. BndLinOp -> ( adjh ` T ) e. dom adjh ) |
|
| 3 | dmadjrnb | |- ( T e. dom adjh <-> ( adjh ` T ) e. dom adjh ) |
|
| 4 | 2 3 | sylibr | |- ( ( adjh ` T ) e. BndLinOp -> T e. dom adjh ) |
| 5 | cnvadj | |- `' adjh = adjh |
|
| 6 | 5 | fveq1i | |- ( `' adjh ` ( adjh ` T ) ) = ( adjh ` ( adjh ` T ) ) |
| 7 | adj1o | |- adjh : dom adjh -1-1-onto-> dom adjh |
|
| 8 | simpl | |- ( ( T e. dom adjh /\ ( adjh ` T ) e. BndLinOp ) -> T e. dom adjh ) |
|
| 9 | f1ocnvfv1 | |- ( ( adjh : dom adjh -1-1-onto-> dom adjh /\ T e. dom adjh ) -> ( `' adjh ` ( adjh ` T ) ) = T ) |
|
| 10 | 7 8 9 | sylancr | |- ( ( T e. dom adjh /\ ( adjh ` T ) e. BndLinOp ) -> ( `' adjh ` ( adjh ` T ) ) = T ) |
| 11 | 6 10 | eqtr3id | |- ( ( T e. dom adjh /\ ( adjh ` T ) e. BndLinOp ) -> ( adjh ` ( adjh ` T ) ) = T ) |
| 12 | adjbdln | |- ( ( adjh ` T ) e. BndLinOp -> ( adjh ` ( adjh ` T ) ) e. BndLinOp ) |
|
| 13 | 12 | adantl | |- ( ( T e. dom adjh /\ ( adjh ` T ) e. BndLinOp ) -> ( adjh ` ( adjh ` T ) ) e. BndLinOp ) |
| 14 | 11 13 | eqeltrrd | |- ( ( T e. dom adjh /\ ( adjh ` T ) e. BndLinOp ) -> T e. BndLinOp ) |
| 15 | 4 14 | mpancom | |- ( ( adjh ` T ) e. BndLinOp -> T e. BndLinOp ) |
| 16 | 1 15 | impbii | |- ( T e. BndLinOp <-> ( adjh ` T ) e. BndLinOp ) |